30 разделить на 10 в столбик примеры. Деление

Содержание

30 разделить на 10 в столбик примеры. Деление

Введите числа и калькулятор разделит числа столбиком и отобразит подробное решение.

Деление в столбик введение

Метод деления столбиком, позволяет упростить деления чисел.

Рассмотрим как делить в столбик на примере нахождения частного двух чисел 6344 ÷ 61.

  • 1 Запишем числа которые будем делить следующим образом: . Слева расположено делимое 6344, справа от черты делитель 61, ниже делителя будем записывать частное.
  • 2 Найдем первую цифру частного, для этого сравниваем делитель 61 с числом состоящим из первый цифр делимого, пока не сформируем число большее или равное делителю. На первом шаге: 6 61, следовательно мы нашли третью цифру частного; записываем в частное 4=244 ÷ 61. Мы использовали все цифры и получили что число 61 делит на цело число 6344 а частное равно 104.

Ниже обозначены основные термины:

Пример Разделить столбиком число 558 на 18.

Примеры деления чисел столбиком

Пример деления многозначных чисел, частное которых содержит цифру ноль.

Пример Выполните деление 1750 на 25.

Рассмотрим подробнее как получили частное 70:

  1. Вычислим первую цифру частного, для этого найдем наименьшее целое делимое которое разделится на 25. Наименьшее целое делимое равно 175 = 25 × 7.
  2. Для вычисления первой цифры частного мы использовали 3 цифры делимого( 175 0), в добавок после нахождения первой цифры мы получили остаток равным нулю 175 — 175 = 0, следовательно для вычисления второй цифры частного мы должны использовать цифры числа начиная с 4(175 0 ). Для вычисления 2 цифры частного остается только цифра 0, следовательно переносим 0 в частное.
Пример 2415 разделить на 23 столбиком.

Рассмотрим на примере как разделить числа столбиком.

Пример Разделить 5538 на 26.

В примере показано деление столбиком чисел 17714 на 34:

Деление натуральных чисел столбиком: правило, примеры

Однозначные натуральные числа легко делить в уме. Но как делить многозначные числа? Если в числе уже более двух разрядов, устный счет может занять много времени, да и вероятность ошибки при операциях с многоразрядными числами возростает.

Деление столбиком — удобный метод, часто применяемый для операции деления многозначных натуральных чисел. Именно этому методу и посвящена данная статья. Ниже мы рассмотрим, как выполнять деление столбиком. Сначала рассмотрим агоритм деления в столбик многозначного числа на однозначное, а затем — многозначного на многозначное. Помимо теории в статье приведены практические примеры деления в столбик.

Запись чисел при делении столбиком

Удобнее всего вести записи на бумаге в клетку, так как при расчетах разлиновка не даст вам запутаться в разрядах. Сначала делимое и делитель записываются слева направо в одну строчку, а затем разделяются специальным знаком деления в столбик, который имеет вид:

Пусть нам нужно разделить 6105 на 55 , запишем:

Промежуточные вычисление будем записывать под делимым, а результат запишется под делителем. В общем случае схема деления столбиком выглядит так:

Следует помнить, что для вычислений понадобится свободное место на странице. Причем, чем больше разница в разрядах делимого и делителя, тем больше будет вычислений.

Например, для деления чисел 614 808 и 51 234 понадобится меньше места, чем для деления числа 8 058 на 4. Несмотря на то, что во втором случае числа меньше, разница в числе их разрядов больше, и вычисления будут более громоздкими. Проиллюстрируем это:

Деление столбиком на однозначное число

Практические навыки удобнее всего отрабатывать на простых примерах. Поэтому, разделим числа 8 и 2 в столбик. Конечно, данную операцию легко произвести в уме или по таблице умножения, однако провести подробный разбор будет полезно для наглядности, хоть мы и так знаем, что 8 ÷ 2 = 4 .

Итак, сначала запишем делимое и делитель согласно методу деления в столбик.

Следующим шагом нужно выяснить, сколько делителей содержит делимое. Как это сделать? Последовательно умножаем делитель на 0 , 1 , 2 , 3 . . Делаем это до тех пор, пока в результате не получится число, равное или большее, чем делимое. Если в результате сразу получается число, равное делимому, то под делителем записываем то число, на которое умножали делитель.

Иначе, когда получается число, большее чем делимое, под делителем записываем число, вычисленное на предпоследнем шаге.На место неполного частного записываем то число, на которое умножался делитель на предпоследнем шаге.

Вернемся к примеру.

2 · 0 = 0 ; 2 · 1 = 2 ; 2 · 2 = 4 ; 2 · 3 = 6 ; 2 · 4 = 8

Итак, мы сразу получили число, равное делимому. Записываем его под делимым, а число 4 , на которое мы умножали делитель, записываем на место частного.

Теперь осталось вычесть числа под делителем (также по методу столбика). В нашем случае 8 — 8 = 0 .

Данный пример — деление чисел без остатка. Число, получащееся после вычитания — это остаток деления. Если оно равно нулю, значит числа разделились без остатка.

Теперь рассмотрим пример, когда числа делятся с остатком. Разделим натуральное число 7 на натуральное число 3 .

В данном случае, последовательно умножая тройку на 0 , 1 , 2 , 3 . . получаем в результате:

3 · 0 = 0 7 ; 3 · 1 = 3 7 ; 3 · 2 = 6 7 ; 3 · 3 = 9 > 7

Под делимым записываем число , полученное на предпоследнем шаге. По делителем записываем число 2 — неполное частное, полученное на предпоследнем шаге. Именно на двойку мы умножали делитель, когда получили 6 .

В завершение операции вычитаем 6 из 7 и получаем:

Данный пример — деление чисел с остатком. Неполное частное равно 2 , а остаток равен 1 .

Теперь, после рассмотрения элементарых примеров, перейдем к делению многозначных натуральных чисел на однозначные.

Алгоритм деления столбиком будем рассматривать на примере деления многозначного числа 140288 на число 4 . Сразу скажем, что понять суть метода гораздо легче на практических примерах, и данный пример выбран не случайно, так как иллюстрирует все возможные нюансы деления натуральных чисел столбиком.

Алгоритм деления столбиком

1. Запишем числа вместе с символом деления столбиком. Теперь смотрим на первую слева цифру в записи делимого. Возможны два случая: число, определяемое этой цифрой, больше, чем делитель, и наоборот. В первом случае мы работаем с этим числом, во втором — дополнительно берем следующую цифру в записи делимого и работаем с соответствующим двузначным числом. Согласно с этим пунктом, выделим в записе примера число, с которым будем работать первоначально. Это число — 14 , так как первая цифра делимого 1 меньше, чем делитель 4 .

2. Определяем, сколько раз числитель содержится полученном числе. Обозначим это число как x = 14 . Последовательно умножаем делитель 4 на каждый член ряда натуральных чисел ℕ , включая нуль : 0 , 1 , 2 , 3 и так далее. Делаем это, пока не получим в результате x или число, большее чем x . Когда в результате умножения получается число 14 , записываем его под выделенным числом по правилам записи вычитания в столбик. Множитель, на который умножался делитель, записываем под делітелем. Если в результате умножения получается число, большее чем x , то под выделенным числом записываем число, полученное на предпоследнем шаге, а на место неполного частного (под делителем) пишем множитель, на который на предпоследнем шаге проводилось умножение.

В соответствии с алгоритмом имеем:

4 · 0 = 0 14 ; 4 · 1 = 4 14 ; 4 · 2 = 8 14 ; 4 · 3 = 12 14 ; 4 · 4 = 16 > 14 .

Под выделенным числом записываем число 12 , полученное на предпоследнем шаге. На место частного записываем множитель 3 .


3. Столбиком вычитаем из 14 12 , результат записываем под горизонтальной чертой. По аналогии с первым пунктом сравниваем полученное число с делителем.

4. Число 2 меньше числа 4 , поэтому записываем под горизонтальной чертой после двойки цифру,расположенную в следующем разряде делимого. Если же в делимом более нет цифр, то на этом операция деления заканчивается. В нашем примере после полученного в предыдущем пункте числа 2 записываем следубщую цифру делимого — 0 . В итоге отмечаем новое рабочее число — 20 .

Пункты 2 — 4 повторяются циклически до окончания операции деления натуральных чисел столбиком.

2. Снова посчитаем, сколько делителей содержится в числе 20 . Умножая 4 на 0 , 1 , 2 , 3 . . получаем:

Так как мы получили в результе число, равное 20 , записываем его под отмеченным числом, а на месте частного, в следубщем разряде, записываем 5 — множитель, на который проводилось умножение.

3. Проводим вычитание столбиком. Так как числа равны, получаем в результате число ноль: 20 — 20 = 0 .

4. Мы не будем записывать число ноль, так как данный этап — еще не окончание деления. Просто запомним место, куда мы могли его записать и запишем рядом число из следующего разряда делимого. В нашем случае — число 2 .

Принимаем это число за рабочее и снова выполняем пункты алгоритма.

2. Умножаем делитель на 0 , 1 , 2 , 3 . . и сравниваем результат с отмеченным числом.

4 · 0 = 0 2 ; 4 · 1 = 4 > 2

Соответственно, под отмеченным числом записываем число 0 , и под делителем в следующий разряд частного также записываем 0 .


3. Выполняем операцию вычитания и под чертой записываем результат.

4. Справа под чертой добавляем цифру 8 , так как это следующая цифра делимого числа.

Таким образом, получаем новое работчее число — 28 . Снова повторяем пункты алгоритма.

Проделав все по правилам, получаем результат:

Переносим под черту вниз последнюю цифру делимого — 8 . В последний раз повторяем пункты алгоритма 2 — 4 и получаем:


В самой нижней строчке записываем число 0 . Это число записывается только на последнем этапе деления, когда операция завершена.

Таким образом, результатом деления числа 140228 на 4 является число 35072 . Данный пример разобран очень подробно, и при решении практических заданий расписывать все действия столь досканально не нужно.

Приведем другие примеры деления чисел в столбик и примеры записи решений.

Пример 1. Деление натуральных чисел в столбик

Разделим натуральное число 7136 на натуральное число 9 .

После второго, третьего и четвертого шага алгоритма запись примет вид:

Последний проход, и поучаем результат:

Ответ: Неполное неполное частное чисел 7136 и 9 равно 792 , а остаток равен 8 .

При решении практических примеров в иделе вообще не использовать пояснения в виде словесных комментариев.

Пример 2. Деление натуральных чисел в столбик

Разделим число 7042035 на 7 .

Деление многозначных натуральных чисел столбиком

Алгоритм деления многозначных чисел в столбик очень похож на рассмотренный ранее алгорим деления многозначного числа на однозначное. Если быть точнее, изменения касаются только первого пункта, а пункты 2 — 4 остаются неизменными.
Если при делении на однозначное число мы смотрели только на первую цифру делимого, то теперь будем смотреть на столько цифр, сколько есть в делителе.Когда число, определяемое этими цифрами, больше делителя, принимам его за рабочее число. Иначе — добавляем еще одну цифру из следующего разряда делимого. Затем следуем пунктам описанного выше алгоритма.

Рассмотрим применение алгоритма деления многозначных чисел на примере.

Пример 3. Деление натуральных чисел в столбик

Разделим 5562 на 206 .

В записи делителя участвуют три знака, поэтому в делимом сразу выделим число 556 .
556 > 206 , поэтому принимаем это число за рабочее и переходим к пункту 2 аглоритма.
Умножаем 206 на 0 , 1 , 2 , 3 . . и получаем:

206 · 0 = 0 556 ; 206 · 1 = 206 556 ; 206 · 2 = 412 556 ; 206 · 3 = 618 > 556

618 > 556 , поэтому под делителем записываем результат предпоследнего действия, а под делимым — множитель 2

Выполняем вычитание столбиком

В результате вычитания имеем число 144 . Справа от результата под чертой записываем число из соответствующего разряда делимого и получаем новое рабочее число — 1442 .

Повторяем с ним пункты 2 — 4 . Получаем:

206 · 5 = 1030 1442 ; 206 · 6 = 1236 1442 ; 206 · 7 = 1442

Под отмеченным рабочим числом записываем 1442 , а в следующий разряд частного записываем цифру 7 — множитель.


Выполняем вычитание в столбик, и понимаем, что на этом операция деления окончена: в делителе более нет цифр, чтобы записать их правее от результата вычитания.

В завершение данной темы приведем еще один пример деления многозначных чисел в столбик, уже без пояснений.

Пример 5. Деление натуральных чисел в столбик

Деление многозначных чисел столбиком на двузначное, трехзначное число в 3,4 классе: как объяснить ребенку + ТОП-10 примеров

Дети во 2-3 классе осваивают новое математическое действие – деление. Школьнику непросто вникнуть в суть данного математического действия, поэтому ему необходима помощь родителей. Родителям нужно понимать, как именно преподносить ребенку новую информацию. ТОП-10 примеров расскажут родителям о том, как нужно учить детей делению чисел столбиком.

Содержание этой статьи:

Обучение делению в столбик в форме игры

Дети устают в школе, они устают от учебников. Поэтому родителям нужно отказаться от учебников. Подавайте информацию в форме увлекательной игры.

Можно поставить задачи таким образом:

Обучение в игровой форме может помочь ребенку быстрее понять весь процесс деления чисел. Он сможет усвоить, что наибольшее число делится на наименьшее или наоборот. То есть, наибольшее число – это конфеты, а наименьшее – участники. В столбике 1 числом будет количество конфет, а 2 – количество участников.

Обучение делению в столбик при помощи таблицы умножения

Ученики до 5 класса смогут разобраться в делении быстрее, при условии того, что они хорошо знают умножениz.

Родителям необходимо разъяснить, что деление имеет сходство с таблицей умножения. Только действия противоположны. Для наглядности нужно привести пример:

  • Скажите ученику, чтобы он произвол умножение значений 6 и 5. Ответ – 30.
  • Подскажите школьнику, что число 30 является результатом математического действия с двумя числами: 6 и 5. А именно, результатом умножения.
  • Разделите 30 на 6. В результате математического действия получится 5. Школьник сможет убедиться в том, что деление – это то же, что и умножение, но наоборот.

Можно воспользоваться таблицей умножения для наглядности деления, если ребенок хорошо ее усвоил.

Обучение делению в столбик в тетради

Начинать обучение нужно тогда, когда ученик понял материал о делении на практике, с помощью игры и таблицы умножения.

Нужно начинать делить таким образом, применяя простые примеры. Так, деление 105 на 5.

Объяснять математическое действие нужно подробно:

  • Напишите в тетради пример: 105 разделить на 5.
  • Запишите это, как при делении в столбик.
  • Расскажите, что 105 – делимое, а 5 – делитель.
  • С учеником определите 1 цифру, которая допускает деление. Значение делимого – 1, эта цифра не делится на 5. А вот второе число – 0. В итоге получится 10, это значение допускается разделить данный пример. Число 5 два раза входит в число 10.
  • В столбике деления, под числом 5, напишите цифру 2.
  • Попросите ребенка число 5 умножить на 2. По итогу умножения получится 10. Это значение нужно записать под числом 10. Далее нужно написать в столбике знак вычитания. От 10 нужно отнять 10. Получится 0.
  • Запишите в столбике число, получившееся в результате вычитания – 0. У 105 осталось число, которое не участвовало в делении – 5. Это число нужно записать.
  • В итоге получится 5. Это значение нужно разделить на 5. Результат – цифра 1. Это число нужно записать под 5. Результат деления – 21.

Родителям нужно объяснить, что это деление не имеет остатка.

Начать деление можно с цифр 6,8,9, затем переходить к 22, 44, 66, а после к 232, 342, 345, и так далее.

Еще один пример деления

Обучение делению с остатком

Когда ребенок усвоит материал о делении, можно усложнять задачу. Деление с остатком – это следующая ступень обучения. Объяснять нужно на доступных примерах:

  • Предложите ребенку разделить 35 на 8. Запишите в столбик задачу.
  • Чтобы ребенку было максимально понятно, можно показать ему таблицу умножения. В таблице наглядно видно, что в число 35 входит 4 раза число 8.
  • Запишите под числом 35 число 32.
  • Ребенку нужно от 35 вычесть 32. Получится 3. Число 3 является остатком.

Деление с остатком

Простые примеры для ребенка

На этом же примере можно продолжить:

  • При делении 35 на 8 получается остаток 3. К остатку нужно дописать 0. При этом после цифры 4 в столбике нужно поставить запятую. Теперь результат будет дробным.
  • При делении 30 на 8 получается 3. Эту цифру нужно записать после запятой.
  • Теперь нужно под значением 30 написать 24 (результат умножения 8 на 3). В итоге получится 6. К цифре 6 тоже нужно дописать ноль. Получится 60.
  • В число 60 помещается цифра 8 входит 7 раз. То есть, получится 56.
  • При вычитании 60 от 56 получается 4. К этой цифре тоже нужно подписать 0. Получается 40. В таблице умножения ребенок может увидеть, что 40 – это результат умножения 8 на 5. То есть, в число 40 цифра 8 входит 5 раз. Остатка нет. Ответ выглядит так – 4,375.

Данный пример может показаться ребенку сложным. Поэтому нужно много раз делить значения, у которых будет остаток.

Обучение делению с помощью игр

Родители могут использовать игры на деление для обучения школьника. Можно дать ребенку раскраски, в которых нужно определить цвет карандаша путем деления. Нужно выбирать раскраски с легкими примерами, чтобы ребенок мог решить примеры в уме.

Картинка будет поделена на части, в которых будут результаты деления. А цвета, которые нужно использовать, будут примерами. Например, красный цвет помечен примером: 15 разделить на 3. Получится 5. Нужно найти часть картинки под этим номером и раскрасить ее. Математические раскраски увлекают детей. Поэтому родителям стоит попробовать данный способ обучения.

Веселый способ изучить деление чисел

Обучение делению столбиком наименьшего числа на наибольшее

Деление данным методом предполагает, что частное будет начинаться с 0, а после него будет стоять запятая.

Чтобы ученик корректно усвоил полученную информацию, ему необходимо привести такого плана пример:

  • Дайте ребенку пример: 1 разделить на 8.
  • Подскажите, что ребенку нужно поставить 0 в частное, а после запятую.
  • Теперь можно приступать к обычному делению.
  • По итогу решения должен получиться такой ответ: 0,125.

Обучение делению столбиком десятичных дробей с запятой

Деление десятичных дробей может запутать ребенка из-за постановки запятой.

Деление десятичных дробей

Чтобы ребенок сориентировался в этом математическом действие, ему необходимо разложить информацию «по полочкам»:

Обучение делению чисел столбиком с нолями

Деление чисел с нолями идентично обычному делению. Родителям нужно объяснить ребенку основные нюансы:

  • Расскажите, что если в конце делимого и делителя есть ноли, то их можно зачеркивать в уме. Предложите школьнику зачеркивать их простым карандашом для понимания. Дальше нужно делить, как и в обычных примерах. Например, если 1200 нужно разделить на 400, то ребенок может сократить пример, убрав два 0 у обоих чисел. А в примере деления 15600 на 560 можно сократить только по одному 0.
  • Объясните ученику, что если 0 есть только в делителе, то его нельзя сокращать.

Чтобы лучше усваивать материал, можно решить простой пример деления:

  • Запишите в тетради пример: 100 разделить на 10. Это легкий пример, так как при сокращении нолей он представлен так: 10 разделить на 1.
  • Ребенку следует под делителем написать цифру 10. Так как при умножении 1 на 10 получается требуемый результат. Под делимым ребенку нужно записать 10. Остатка у этого примера нет.

Предложите ребенку легкие примеры такого типа:

  • 200 разделить на 20;
  • 300 разделить на 30;
  • 400 разделить на 40;
  • 500 разделить на 50;
  • 600 разделить на 60;
  • 700 разделить на 70.

Далее можно переходить к сложным примерам. Но только после того, как ребенок усвоит результат.

ВИДЕО: Почему нельзя делить на ноль

Почему нельзя делить на 0

Правило школьной математики

Обучение делению столбиком в уме

Родители могут помочь ребенку научиться делить в уме. Это может пригодиться им не только в школе, но и в дальнейшей жизни.

В уме дети считают тоже столбиком. Это удобно и знакомо. У детей развито воображение, поэтому они смогут быстро освоить технику. Приступать к обучению деления столбиком в уме нужно тогда, когда ребенок без труда справляется с делением в тетради. Обучение:

  • Расскажите школьнику о том, что делить столбиком можно не только в тетради, но и в уме.
  • Объясните ученику о том, что частное можно разложить на составляющие.
  • Значение 3647необходимо поделить на 7. Нужно показать частное как сумму чисел 3500 и 147. Значение 3500 самое оптимальное, так как его можно поделить на 7, не имея остатка. В результате деления 3500 на 7 получается 500, а при делении 147 на 7 получается 21. Числа 500 и 21 нужно сложить, в результате получится 521. Данное число является ответом в примере деления 3647 на 7.

Ребенок не сразу может освоить эту технику деления. Все зависит от родителей. Их задача заключается в помощи ребенку без давления.

ВИДЕО: Как научиться делить в уме

Тренажер быстрого деления в уме

Как научиться быстро и просто делить цифры в уме

Обучение делению многочленов

В 5-6 классе у детей появляется новое сложное математической действие. Деление многочленов.

Детям нужно рассказать тонкости деления данного формата:

  • По итогу деления может быть остаток, так же он может отсутствовать.
  • Чтобы совершать вычитание, нужно дополнять в многочлен недостающей степенью функции, умноженной на 0.
  • Делайте преобразование многочлена с помощью выделения повторяющихся многочленов или двучленов. При сокращении получится ответ без остатка.

Рекомендации для легкого обучения ребенка

Чтобы ребенок быстро осваивал новый математический материал, его необходимо заранее подготовить. Важно научить трехлетнего ребенка понятиям «целое» и «часть». Ребенка важно научить восприятию целого, как неразделимого и частей целого, как самостоятельного объекта.

Также важно пробудить интерес к предмету у ребенка. Этому способствуют аналоги математических игр в процессе игры. Наблюдение за природой тоже можно преобразовать в увлекательную математику.

Родителям нужно тренировать наблюдательность детей. Это ключ к пониманию математики и других предметов.

Можно обзавестись полезными таблицами умножения и деления. Плакаты можно повесить в комнате ребенка. Тогда он может в любой момент ими воспользоваться и справиться с задачами.

ВИДЕО: Деление в столбик

Деление в столбик

Как научиться ребенку делить числа в столбик

Родители – это главные помощники детей. Главная их задача – научить ребенка делению, но без применения жестких методов. На обучение может уйти не одна неделя, поэтому нужно готовиться и запасаться терпением. Теперь у родителей есть ТОП-10 примеров обучения. При этом затронуты разные возрастные категории. Если вы не согласны с рейтингом статьи, то просто поставьте свои оценки и аргументируйте их в комментариях. Ваше мнение очень важно для наших читателей. Спасибо!

Источники:

http://calcs.su/%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5-%D1%81%D1%82%D0%BE%D0%BB%D0%B1%D0%B8%D0%BA%D0%BE%D0%BC.html
http://zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/delenie-naturalnyh-chisel/
http://slovami.net/delenie-chisel-stolbikom/

Читать еще:  Тема неделя транспорт 2 младшая группа. «Календарно-тематическое планирование в младшей группе Тема «Транспорт». Пальчиковая игра «Транспорт»
Ссылка на основную публикацию
Adblock
detector