Чем отличаются формулы третьего закона ньютона. Первый закон ньютона

Законы Ньютона

В той или иной форме законы классической механики известны очень давно. Иногда эти законы формулировались и понимались с ошибками. Ярким примером одной из ошибок было неправильное понимание причин движения, высказанное Аристотелем. Он считал, что движение продолжается только до того момента времени, пока на объект действует сила. Ошибка состояла в том, что Аристотель не учитывал свойств инерции, присущих веществу. По мере развития физики и накопления экспериментальных данных, законы механики уточнялись и, наконец, были в современной форме сформулированы Исааком Ньютоном. Именем Ньютона названо много законов. Если говорить только о механике, то можно указать 4 закона Ньютона. Один из них – знаменитый закон Всемирного тяготения

.

Здесь – постоянная Всемирного тяготения, и – взаимодействующие массы, расстояние между которыми равно , дробь – орт, указывающий направление действия силы и проведенный из первой массы, знак минус показывает, что при взаимодействии масс возникает сила притяжения.

Однако, говоря о законах Ньютона в механике, чаще подразумевают три закона.

Первый закон – закон инерции. Как и остальные законы Ньютона он является результатом обобщения экспериментальных данных. Закон утверждает следующее. Если результирующая всех сил, действующих на материальную точку, равна нулю, то материальная точка находится в состоянии покоя или равномерного прямолинейного движения.

Первый закон исправляет ошибку Аристотеля. Он утверждает, что в природе существуют инерциальные системы отсчета, относительно которых материальная точка может покоиться.

Второй закон Ньютона, который иначе называется законом движения в классической физике может быть записан в трех близких формах:

А). .

Б). .

В). .

Форма закона А) — наиболее примитивная, «школьная» форма Второго закона Ньютона. Она плоха тем, что глядя на неё можно подумать, что ускорение является постоянной величиной. На самом деле ускорение может изменяться с течением времени.

Вторая форма – наиболее распространенная запись Второго закона Ньютона. Эту форму называют еще «Уравнение движения». Она дает решение для переменного ускорения или, что важнее, при заданных силах – зависимость , которая называется «Закон движения».

Определение закона движения (выполняется двойным интегрированием по времени) составляет прямую основную задачу динамики. Определение равнодействующей силы по известному (например, из эксперимента) закону движения – обратная основная задача динамики.

Приведем пример решения прямой задачи движения. Она имеет однозначное решение, если только заданы начальные условия, то есть координаты и проекции скоростей материальной точки в начальный момент времени (обычно за такой момент принимают , но можно выбирать произвольное значение ).

Пусть сила, действующая на материальную точку, равна и дважды интегрируема. Пусть также начальное положение точки определяется условием , а начальная скорость – условием . Тогда, учитывая формулировку Второго закона Ньютона, запишем:

Читать еще:  Педагогическое эссе воспитателя доу. Эссе «Моя профессия - воспитатель. Педагогические эссе учителя

,

или, учитывая определение мгновенного ускорения,

.

.

Если теперь провести неопределенное интегрирование, то можно получить

.

По условию, интеграл от силы существует, а значение скорости в начальный момент равно . Так как сила в начальный момент еще не изменила скорость, то мгновенная скорость приобретает однозначный вид

.

Теперь, при заданной силе, мгновенная скорость полностью определена и можно переходить к определению закона движения. Для этого воспользуемся определением мгновенной скорости и запишем

.

.

Опять проводим неопределенное интегрирование:

.

Первый интеграл вычисляется, давая , второй остается неизменным – в случае конкретного указания силы, он также может быть вычислен. Произвольная константа определяется по начальному условию. При имеем и тогда

.

Закон движения определен полностью. Это называется решением первой задачи динамики «в квадратурах».

Необходимо подчеркнуть, что первая задача динамики (для любого случая – прямолинейного движения или вращения, отдельной материальной точки, системы точек или твердого тела) может быть решена только при указании достаточного количества начальных условий.

Форма В) – наиболее общая форма записи Второго закона Ньютона. Там проводится дифференцирование импульса по времени. Это дифференцирование может затрагивать только скорость, но может затрагивать и скорость, и массу. Такое дифференцирование пригодно и для релятивистских задач, когда масса зависит от скорости и от времени: . Эта же форма пригодна и для классической области, если масса системы переменна. Примерами может служить поливальная машина и ракета. Именно на основе этой формы Циолковский получил уравнение движения ракеты и обосновал утверждение, что ракета может лететь в вакууме (было время, когда некоторые ученые утверждали, что в космосе ракета не полетит: «Ей там не от чего отталкиваться»).

Последнее утверждение получается при использовании двух других законов – Третьего закона Ньютона или закона сохранения импульса. Интересно, что в отличие от основных законов физики, являющихся (как правило) обобщением опытных данных, из закона сохранения импульса можно строго математически получить Третий закон Ньютона, и наоборот, приняв Третий закон можно на его основе получить закон сохранения импульса.

Для того, чтобы сформулировать третий закон, надо ввести понятие «замкнутая система»(иногда говорят «изолированная система», см. Д.В. Сивухин, т. I). По определению это такая система, на каждую материальную точку не действуют внешние силы. Тела замкнутой системы могут взаимодействовать только меду собой.

Пусть система состоит из двух материальных точек. Тогда можно показать (или принять как экспериментальный факт), что эти силы имеют три особенности. Они:

А) равны по величине (по модулю),

Б) направлены вдоль прямой, соединяющей материальные точки,

В) причем в противоположные стороны.

Это словесная формулировка Третьего закона Ньютона. В виде формулы этот закон записывается так:

,

индексы показывают, что рассматривается сила, действующая на первую материальную точку со стороны второй точки.

Если система состоит из материальных точек, то третий закон Ньютона обобщается так:

.

Здесь есть некая тонкость, заключающаяся в том, что в механике рассматривают только парные взаимодействия частиц. Например, силы типа и более сложные не рассматриваются.

Читать еще:  Как быстро отучить от пустышки. Случаи, когда не нужно начинать отучение от пустышки. способа, как отучить от соски

Закон сохранения импульса удобнее обсудить позже.

149.154.154.61 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Третий закон Ньютона

Описание третьего закона Ньютона

Например, книга, лежащая на столе, действует на стол с силой, прямо пропорциональной своей массе и направленной вертикально вниз. Согласно третьему закону Ньютона стол в это же время действует на книгу с абсолютно такой же по величине силой, но направленной не вниз, а вверх.

Когда яблоко падает с дерева, это Земля действует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно движется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с такой же силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, является следствием второго закона Ньютона. Масса яблока по сравнению с массой Земли мала до несопоставимости, поэтому именно ускорение яблока заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно.

Аналогично, если мы пинаем мяч, то мяч в ответ пинает нас. Другое дело, что мяч имеет намного меньшую массу, чем тело человека, и потому его воздействие практически не чувствуется. Однако если пнуть тяжелый железный мяч, ответное воздействие хорошо ощущается. Фактически, мы каждый день по многу раз «пинаем» очень и очень тяжелый мяч — нашу планету. Мы толкаем ее каждым своим шагом, только при этом отлетает не она, а мы. А все потому, что планета в миллионы раз превосходит нас по массе.

Таким образом, третий закон Ньютона утверждает, что силы как меры взаимодействия всегда возникают парами. Эти силы не уравновешиваются, так как всегда приложены к разным телам.

Третий закон Ньютона выполняется только в инерциальных системах отсчета и справедлив для сил любой природы.

Примеры решения задач

На груз в лифте действуют сила тяжести и сила реакции опоры .

По второму закону Ньютона:

Направим координатную ось , как показано на рисунке и запишем это векторное равенство в проекциях на координатную ось:

откуда сила реакции опоры:

Груз будет действовать на пол лифта с силой, равной его весу. По третьему закону Ньютона, эта сила равна по модулю силе, с которой пол лифта действует на груз, т.е. силе реакции опоры:

Ускорение свободного падения м/с

Подставив в формулу численные значения физических величин, вычислим:

Третий закон Ньютона

В этом разделе мы рассмотрим третий закон Ньютона, приведем подробные объяснения, познакомимся со значимыми понятиями, выведем формулу. Сухую теорию мы «разбавим» примерами и рисункам-схемами, которые облегчат усвоение темы.

В одном из прошлых разделов мы провели опыты по измерению ускорений двух тел после их взаимодействия и получили следующий результат: массы взаимодействующих друг с другом тел находятся в обратной зависимости с численными значениями ускорений. Так было введено понятие массы тела.

Читать еще:  Анкета для родителей по экологическому воспитанию. Анкеты опросники для родителеи?. Выезжая на природу – улыбайтесь

m 1 m 2 = — a 2 a 1 или m 1 a 1 = — m 2 a 2

Формулировка третьего закона Ньютона

Если придать этому соотношению векторную форму, получится:

m 1 a 1 → = — m 2 a 2 →

Знак минус в формуле появился неслучайно. Он свидетельствует о том, что ускорения двух тел, вступивших во взаимодействие, всегда направлены в противоположные стороны.

В качестве факторов, определяющих появление ускорения, согласно второму закону Ньютона, являются силы F 1 → = m 1 a 1 → и F 2 → = m 2 a 2 → , которые возникают при взаимодействии тел.

Так мы получили фомулу третьего закона Ньютона.

Силы, с которыми тела вступают во взаимодействие друг с другом, равны по модулю и противоположны по направлению.

Природа сил, возникающих во время взаимодействия тел, одинакова. Эти силы приложены к разным телам, потому не могут уравновешивать друг друга. По правилам векторного сложения мы можем складывать только те силы, которые прилагаются к одному телу.

Третий закон Ньютона в примерах

Грузчик оказывает воздействие на некий груз с такой же по модулю силой, с какой этот груз воздействует на грузчика. Силы направлены в противоположные стороны. Физическая их природа одна и та же: упругие силы каната. Ускорение, которое сообщается каждому из тел из примера, обратно пропорционально массе тел.

Мы проиллюстрировали этот пример применения третьего закона Ньютона рисунком.

Рисунок 1 . 9 . 1 . Третий закон Ньютона

F 1 → = — F 2 → · a 1 → = — m 2 m 1 a 2 →

Силы, воздействующие на тело, могут быть внешними и внутренними. Введем необходимые для знакомства с темой третьего закона Ньютона определения.

Внутренние силы – это силы, которые действуют на различные части одного и того же тела.

Если мы рассматриваем тело, находящееся в движении, как единое целое, то ускорение этого тела будет определяться лишь внешней силой. Внутренние силы второй закон Ньютона не рассматривает, так как сумма их векторов равна нулю.

Предположим, что у нас есть два тела с массой m 1 и m 2 . Эти тела жестко связаны между собой нитью, которая не имеет веса и не растягивается. Оба тела двигаются с одинаковым ускорением a → под воздействием некоторой внешней силы F → . Эти два тела движутся как единое целое.

Внутренние силы, которые действуют между телами, подчиняются третьему закону Ньютона: F 2 → = — F 1 → .

Движение каждого из тел в сцепке зависит от сил взаимодействия между этими телами. Если применить второй закон Ньютона к каждому из этих тел по отдельности, то мы получим: m 1 a 1 → = F 1 → , m 2 a 1 → = F 2 → + F → .

Мы можем сложить правую и левую части этих уравнений, приняв во внимание, что a 1 → = a 2 → = a → и F 2 → = — F 1 → .

Получим: ( m 1 + m 2 ) a → = F 1 → .

Как видите, внутренние силы исключились из уравнения движения системы двух связанных тел.

Рисунок 1 . 9 . 2 . Исключение внутренних сил.

Рисунок 1 . 9 . 3 . Модель движения связанных брусков.

Источники:

http://studopedia.ru/2_25893_zakoni-nyutona.html
http://ru.solverbook.com/spravochnik/mexanika/dinamika/tretij-zakon-nyutona/
http://zaochnik.com/spravochnik/fizika/osnovy-dinamiki/tretij-zakon-njutona/

Ссылка на основную публикацию
Adblock
detector