Время размять мозги: решаем задачи на логику

Содержание

Время размять мозги: решаем задачи на логику

В детстве в учебниках по математике всегда были задачи, помеченные звездочкой, так называемые «задачи повышенной сложности». Некоторые учителя по какой-то причине их либо пропускали, либо уделяли очень мало внимания, либо оставляли на самостоятельный разбор в качестве домашнего задания, либо просто не располагали временем для их разбора. На самом деле эти задачи активно развивают мышление ребенка, его интеллектуальные способности, в особенности логику.

«Зачем вообще развивать логику?» – спросите вы. К примеру, человек работает бухгалтером или филологом, биологом или тренером в спортивном зале. Вот, к чему в его практике акцентировать внимание на логическом мышлении? Ответ прост: развитая логика означает развитое мышление, способность видеть очевидные вещи, приходить к ним самостоятельно, а не с чьей-то помощью, делать практические выводы, которые помогают в обыденных ситуациях. Иногда логически поразмыслив, мы приходим к, казалось бы, простым и очевидным вещам, хотя до этого их не замечаем.

Кстати, развитие логического мышления, а также других навыков поможет вам учиться быстрее, эффективнее и интереснее. Этот же результат вы получите по прохождении нашей 5-недельной онлайн-программы «Лучшие техники самообразования».

Хорошо. Допустим, момент с задачками со звездочкой упущен, не вернешь былые школьные годы. Означает ли это, что нам уже никак не получится развить логику, действительно ли поезд с интеллектуальным капиталом ушел? Однозначно нет! И в этой статье мы попытаемся потренировать нашу логику. Так что включайтесь в работу и айда решать задачки на развитие логического мышления.

Ниже вы увидите ряд заданий. Не торопитесь открывать окошко с ответом, подумайте над решением, попытайтесь подойти к решению нестандартно, рассмотрите возможные варианты, перенесите смысловые акценты в задании, в общем, постарайтесь мыслить с разнопланово. В любом случае, не отчаивайтесь, если не придете к правильному ответу. Терпение и труд все перетрут. А мы желаем вам успехов!

Двойные шахматы

Двое игpают в шахматы по следyющим пpавилам: сначала делают два хода белые, потом — два хода чеpные, потом снова два хода белые и т.д.
Если одномy из коpолей объявлен шах (допyстим, чеpномy), то в этом слyчае ход сpазy же пеpеходит к чеpным, но они имеют пpаво только на один ход, чтобы yйти от шаха (если yйти за один ход невозможно, то, как обычно, мат.)
Задача: доказать, что в такой паpтии белым пpи наилyчшей игpе гаpантиpована как минимyм ничья.

Ответ: Если при наилучшей игре со стороны белых существовала бы стратегия для черных, при которой белые проигрывают, то белые могли бы первым ходом выйти конем и вернуться им в начальную позицию (так, чтобы позиция не изменилась). Теперь черные попадают в ситуацию, идентичную изначальной позиции белых с точностью до зеркальной симметрии. То есть, белые, применив зеркальный аналог выигрышной стратегии черных, могут победить. Получается противоречие. Значит белым гарантирована, как минимум, ничья.

Ответ: Сергей изучает китайский язык, Михаил — японский, Вадим — арабский .

Метод второй: Метод таблиц

Основной прием, который используется при решении текстовых логических задач, заключается в построении таблиц. Таблицы не только позволяют наглядно представить условие задачи или ее ответ, но в значительной степени помогают делать правильные логические выводы в ходе решения задачи. [5]

Идея метода: оформлять результаты логических рассуждений в виде таблицы.

Преимущества метода:

2)возможность контролировать процесс рассуждений;

3)возможность формализовать некоторые логические рассуждения.

Задача 2 . Данным способом можно решить, известную многим загадку Эйнштейна.

5 разных человек в 5 разных домах разного цвета, курят 5 разных марок сигарет, выращивают 5 разных видов животных, пьют 5 разных видов напитков.

Вопрос:1) Кто выращивает рыбок?

2)Норвежец живет в первом доме.

3)Англичанин живет в красном доме.

4)Зеленый дом находится непосредственно слева от белого.

5)Датчанин пьет чай.

6)Тот, кто курит Rothmans, живет рядом с тем, кто выращивает кошек.

7)Тот, кто живет в желтом доме, курит Dunhill.

8)Немец курит Marlboro.

9)Тот, кто живет в центре, пьет молоко.

10)Сосед того, кто курит Rothmans, пьет воду.

11)Тот, кто курит Pall Mall, выращивает птиц.

12)Швед выращивает собак.

13)Норвежец живет рядом с синим домом.

14)Тот, кто выращивает лошадей, живет в синем доме.

15)Тот, кто курит Philip Morris, пьет пиво.

16)В зеленом доме пьют кофе.

Метод третий: Метод блок-схем

Этот метод используют в основном для задач, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости, а также задачи, связанные с операцией взвешивания на чашечных весах. Простейший прием решения задач этого класса состоит в переборе возможных вариантов. Понятно, что такой метод решения не совсем удачный, в нем трудно выделить какой-либо общий подход к решению других подобных задач.

Более систематический подход к решению задач «на переливание» заключается в использовании блок-схем. Суть этого метода состоит в следующем. Сначала выделяются операции, которые позволяют нам точно отмерять жидкость. Эти операции называются командами. Затем устанавливается последовательность выполнения выделенных команд. Эта последовательность оформляется в виде схемы. Подобные схемы называются блок-схемами и широко используются в программировании. Составленная блок-схема является программой, выполнение которой может привести нас к решению поставленной задачи. Для этого достаточно отмечать, какие количества жидкости удается получить при работе составленной программы. При этом обычно заполняют отдельную таблицу, в которую заносят количество жидкости в каждом из имеющихся сосудов. [4]

Читать еще:  Как начисляются пенсии ип и работающие одновременно. Как рассчитывается пенсия, пример расчета. Страховая пенсия по старости

Идея метода: описать последовательность выполнения операций, определить порядок их выполнения и фиксировать состояния.

Задача 3 . Имеются два сосуда — трехлитровый и пятилитровый. Нужно, пользуясь этими сосудами, получить 1, 2, 3, 4, 5, 6, 7 и 8 литров воды. В нашем распоряжении водопроводный кран и раковина, куда можно выливать воду.

Решение. Перечислим все возможные операции, которые могут быть использованы нами, и введем для них следующие сокращенные обозначения: НБ — наполнить больший сосуд водой из-под крана; НМ — наполнить меньший сосуд водой из-под крана; ОБ — опорожнить больший сосуд, вылив воду в раковину; ОМ — опорожнить меньший сосуд, вылив воду в раковину; Б→М — перелить из большего в меньший, пока больший сосуд не опустеет или меньший сосуд не наполнится; М→Б — перелить из меньшего в больший, пока меньший сосуд не опустеет или больший сосуд не наполнится. Выделим среди перечисленных команд только три: НБ, Б→М, ОМ. Кроме этих трех команд рассмотрим еще две вспомогательные команды: Б = 0 ? — посмотреть, пуст ли больший сосуд; М = З ? — посмотреть, наполнен ли малый сосуд.

В зависимости от результатов этого осмотра мы переходим к выполнению следующей команды по одному из двух ключей — «да» или «нет». Такие команды в программировании принято называть командами «условного перехода» и изображать в блок-схемах в виде ромбика с двумя ключами-выходами.

Договоримся теперь о последовательности выполнения выделенных команд. После Б→М будем выполнять ОМ всякий раз, как меньший сосуд оказывается наполненным, и НБ всякий раз, как больший сосуд будет опорожнен. Последовательность команд изобразим в виде блок-схемы.

Начнем выполнение программы. Будем фиксировать, как меняется количество воды в сосудах, если действовать по приведенной схеме. Результаты оформим в виде таблицы.

Дальше эта последовательность будет полностью повторяться. Из таблицы видим, что количество воды в обоих сосудах вместе образует следующую последовательность: 0, 5, 2, 7, 4, 1, 6, 3, 0 и т.д. Таким образом, действуя по приведенной схеме, можно отмерить любое количество литров от 1 до 7. Чтобы отмерить еще и 8 литров, надо наполнить оба сосуда.

Метод четвертый: метод графов.

Граф — множество точек, изображенных на плоскости (листе бумаги, доске), некоторые пары из которых соединены отрезками. Точки называют вершинами графов, а отрезки — ребрами графов. Выделяя из словесных рассуждений главное — объекты и отношения между ними, графы представляют изучаемые факты в наглядной форме.

Примеры решения логических задач с использованием графов подкупают своей наглядностью и простотой, избавляют от лишних рассуждений, во многих случаях сокращают нагрузку на память. С одной стороны, графы позволяют проследить все логические возможности изучаемой ситуации, с другой, благодаря своей обозримости, помогают в ходе решения задачи классифицировать логические возможности, отбрасывать неподходящие случаи, не доводя до полного перебора всех случаев.
Идея метода: выявление и последовательное исключение логических возможностей, задаваемых условиями задачи.

Задача 4. Три ученицы — Аня, Варя и Клава — на первомайской демонстрации были: одна в крас­ном, другая в белом, третья в синем платье. В вы­сказывании: Аня была в красном платье, Варя не в красном, Клава не в синем — одна часть верна, а две неверны. В каком платье была каждая из уче­ниц?

Решение: Будем исходить из двух возможно­стей: Аня была в красном платье (Ак) и Аня была не в красном (то есть в белом или синем) и изобра­зим эти возможности: первую ребром Ак, а вторую двумя ребрами Ас и Аб, исходящими из одной точки. Если Аня была в красном платье, то в синем могла быть или Варя, или Клава. По­этому к ребру Ак присоединим 2 ребра Вс и Кс. Путь АкВс закончим Кб, а путь АкКс закончим Вб. Но из двух получившихся путей условию задачи ни один не удовлетворяет.

Обратимся ко второй возможности. К ребру Ас присоединим два ребра Вк и Кк, так как в красном платье в этом случае могла быть Варя или Клава. Такие же два ребра присоединим к Аб. Закончить каждый из получившихся путей очень просто: нуж­но присоединить последовательно ребра Кб, Вб, Кс и Вс. Имеем четыре логические возможности, но условию задачи удовлетворяет лишь путь АсВкКб, а остальные три пути — не удовлетворяют. Значит, Аня была в синем платье, Варя — в красном, а Кла­ва—в белом.

Метод пятый: метод кругов Эйлера.

Упростить решение многих логических задач помогают так называемые круги Эйлера, с помощью которых можно изобразить множество элементов, обладающих определенным свойством. Круги Эйлера — геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления.

Тип задач: Метод кругов Эйлера позволяет графически решать математические задачи, основанные на применении теории множеств.

Формальный способ решения подобных задач:

1. Выделить в тексте задачи рассматриваемые свойства объектов.

2. Заполнить круги Эйлера-Венна, проанализировав соответствие объектов и присущих им свойств.

3. Выбрать решение – набор значений простых высказываний, при котором соответствие объектов и свойств является истинным.

4. Проверить, удовлетворяет ли полученное решение условию задачи.

Преимущества и недостатки данного способа:

Необязательность знания формул и законов алгебры логики

Не подходит для решения сложных задач

Не обладает универсальностью, т.е. предназначен для определенного класса задач

Задача 5 . Каждый из 35 шестиклассников является читателем, по крайней мере, одной из двух библиотек: школьной и районной. Из них 25 человек берут книги в школьной библиотеке, 20 – в районной.

1.Являются читателями обеих библиотек;
2. Не являются читателями районной библиотеки;
3. Не являются читателями школьной библиотеки;
4. Являются читателями только районной библиотеки;
5. Являются читателями только школьной библиотеки?

Решение: Заметим, что первый вопрос является ключевым для понимания и решения данной задачи. Ведь не сразу сообразишь, как получается 20 + 25 = 45 из 35. В первом вопросе звучит подсказка к пониманию условия: есть ученики, которые посещают обе библиотеки. А если условие задачи изобразить на схеме, то ответ на первый вопрос становится очевидным.

1. 20 + 25 – 35 = 10 (человек) – являются читателями обеих библиотек. На схеме это общая часть кругов. Мы определили единственную неизвестную нам величину. Теперь, глядя на схему, легко даем ответы на поставленные вопросы.

Читать еще:  Какие последствия токсоплазмоза? Что такое токсоплазмоз

2. 35 – 20 = 15 (человек) – не являются читателями районной библиотеки. (На схеме левая часть левого круга)

3. 35 – 25 = 10 (человек) – не являются читателями школьной библиотеки. (На схеме правая часть правого круга)

4. 35 – 25 = 10 (человек) – являются читателями только районной библиотеки. (На схеме правая часть правого круга)

5. 35 – 20 = 15 (человек) – являются читателями только школьной библиотеки. (На схеме левая часть левого круга).

Очевидно, что 2 и 5, а также 3 и 4 – равнозначны и ответы на них совпадают.

Математические задачи на логику: 3-4 класс

Дальнейшее обучение в школе имеет свои особенности: дети научились складывать двузначные числа, совершать с ними различные математические операции, в том числе умножение, деление. Логические математические задачи для школьников 3-4 класса должны охватывать уже полученные знания и совершенствовать их качество.

  1. В кошельке лежит 15 копеек двумя монетами. Одна из монет не пятак, как такое может быть? Ответ: может, т.к. другая монета вполне может быть пятаком.
  2. Шла Маша в Волгоград, а навстречу ей 10 ребят. У каждого в руках по лукошку, в каждом лукошке по кошке, а у каждой кошки по котенку. Сколько всего ребят шло в Волгоград? Ответ: одна Маша. Все остальные, сколько бы их не перечисляли, шли навстречу девочке, а значит в противоположную сторону от Волгограда.
  3. Дедушка пилит бревна. Распил бревна пополам он делаем ан одну минуту. Сколько ему понадобится времени, чтобы распилить бревно на 10 частей? Ответ: 9 минут, т.к.чтобы распилить бревно на 10 частей, нужно сделать 9 распилов.
  4. Мальчик пришел в амбар. В каждом углу амбара стояло по 3 мешка. На каждом мешке сидело по кошке, у каждой кошки было по котенку. Сколько всего ног было в амбаре? Ответ: две, только мальчика.

Примечание: Как бы долго дети не перемножали между собой числа-«ноги» кошек и котят, стоит помнить, что у кошек – лапы, а ноги – только у мальчика.

С каждым годом задания на развитие логики и смекалки должны становится все сложнее, иметь подвохи, хитрости, чтобы ребенок учился размышлять, уделять внимание деталям. А регулярные и систематические занятия обязательно принесут свои плоды.

Логические задачи для всех возрастов (с ответами в конце текста)

Логика — одна из главных дисциплин для развития ума и мышления, в примерах и задачах эта дисциплина входит в обязательный набор обучения детей. Разбираемся, как именно и когда начинать разбирать и решать логические задачи, как учить ребенка мыслить стройно и красиво.

Что такое логика

Древние греки называли логику «наукой о правильном мышлении», «способностью к рассуждению». Слово «логос» по-древнегречески значит «рассуждение», «мысль», «разум», «смысл». А логика подразумевает умение правильно мыслить. Она — первый шаг на пути интеллектуального размышления.

Логика учит тому, как из одних размышлений следуют другие и почему это правильно. Кто знает логику, привык логически мыслить, тот готов к спору, аргументации, отстаиванию своей точки зрения. Например, доказательства теорем в геометрии строго подчинены основным логическим операциям — к главным методам логического размышления относятся знаменитые дедукция (от общего к частному), индукция (от частного к общему) и абдукция (метод дедуктивного размышления, основанного на выдвижении гипотез и признании их истинными или ложными).

Законы логики

Общепринятые положения, которым должны удовлетворять все рассуждения

  • Закон тождества утверждает, что все понятия и суждения в рассуждении должны оставаться теми же. Например, если вы сказали, что дождь — мокрый, это понятие должно пройти через все размышление.
  • Закон непротиворечия настаивает, что два противоположных понятия не могут быть одновременно истинными. Если вы говорите, что суждения «дождь мокрый» и «дождь сухой» одновременно истинны, то одно из этих суждений ложно.
  • Закон достаточного основания говорит о том, что всякое суждение должно быть доказано.
  • Закон исключённого третьего довольно прост. Он говорит о том, что есть только истинные суждения или ложные, исключений нет.

Дедукция

Метод логического размышления, позволяющий установить истинность суждения от общего к частному. Например, из истинного высказывания общего характера «Все люди смертны» и истинного высказывания частного характера «Сократ — человек» следует истинность суждения «Сократ смертен».

Дедукция — самый частый прием логического размышления. Именно им часто пользовался, к примеру, Шерлок Холмс. Этот прием используется в науке и для решения многих логических задач.

Индукция

Противоположный дедукции метод логического размышления, позволяющий установить истинность высказывания от истинного частного размышления к истинному общему.

Например, истинное высказывание частного случая «В Аргентине, Эквадоре и Венесуэле говорят на испанском языке» и истинного высказывания «Аргентина, Эквадор и Венесуэла латиноамериканские страны» следует истинное высказывание общего характера «Вероятно, во многих странах Латинской Америки говорят на испанском языке».

Важно — в индукции вывод об истинности следует на основании достаточных и всеобъемлющих данных. На основании данных недостаточных вывод может быть вероятностным. К примеру, попробуйте ответить на вопрос «Во всех ли странах Латинской Америки говорят на испанском языке?». Вывод «во всех» будет ложным — у вас недостаточно данных для такого утверждения. Вспомните Бразилию — там говорят на португальском. А умозаключение «Во многих странах Латинской Америки говорят на испанском» будет логически верным. Теперь можно перейти к решению логических задач.

Логические задачи как примеры размышлений с примерами (и ответами)

Попробуйте, пользуясь методами индукции и дедукции, решить следующие примеры (ответы на них мы дадим в конце текста). Размышляйте и проверяйте себя!

1. Все небесные тела движутся
Все планеты — это небесные тела

2. Все животные смертны
Все люди — животные

3. Ни одна рептилия не имеет меха
Все змеи — рептилии

4. Все котята игривые
Некоторые домашние животные — котята

5. Ни одна домашняя работа не весела
Некоторое чтение — домашняя работа

6. Все прилежные мальчики в этой школе рыжие
Некоторые прилежные мальчики в этой школе — отличники

7. Все кошки млекопитающие
Некоторые кошки не имеют хвоста

Правильные ответы

1. Все планеты движутся

2. Все люди смертны

3. Ни одна змея не имеет меха

4. Некоторые домашние животные игривы

5. Некоторое чтение не весело

6. Некоторые прилежные отличники в этой школе рыжие

7. Некоторые млекопитающие не имеют хвоста

Развернутые сюжетные логические задачи с ответами

Теперь давайте попробуем решить полноценные логические задачи. Ответы с объяснениями на каждую из них в конце материала.

Задача 1

Один кролик увидел 6 слонов, когда шел к реке. Каждый слон видел, как 2 обезьяны идут к реке. Каждая обезьяна держит в руках по одной черепахе.

Сколько животных идет к реке?

Задача 2

У матери Билли было пятеро детей. Первого звали Лала, второго — Леле, третьего — Лили, четвертого — Лоло. Как назвали пятого ребенка?

Задача 3

Выберите правильное утверждение: «Желток яйца белый» или «У яиц белые желтки».

Задача 4

Оно легкий, как перышко, но самый сильный человек не может задержать его больше чем на пять минут. Что это?

Задача 5

Чем больше его, тем меньше вы видите. Что это?

Задача 6

Вы можете найти ее на Меркурии, Марсе, Юпитере и Сатурне, но не на Земле или Нептуне. Что это?

Задача 7

Он любит пищу, но вода убивает его. Что это?

Задача 8

Что полно дыр, но может удерживать воду?

Задача 9

Что тяжелее — килограмм перьев или килограмм камней?

Задача 10

Вы едете на городском автобусе. На первой остановке садятся три женщины. На второй остановке одна женщина выходит, а мужчина садится. На третьей остановке садятся двое детей. Автобус синий, а на улице в декабре идет дождь. Какого цвета волосы у водителя автобуса?

Задача 11

Есть три дома. Один красный, один синий и один белый. Если красный дом находится слева от дома посередине, а синий — справа от дома посередине, то где же белый дом?

Задача 12, классическая, из мифа об Эдипе и Сфинксе

Что двигается на четырех ногах утром, двух — днем, и трех — вечером?

Задача 13

Человек шел под дождем неизвестно куда без пальто и зонта. Он промок насквозь, но ни один волосок на его голове не был мокрым. Как такое может быть?

Ответы и объяснения

Задача 1

В этой загадке много ловушек. Первая из них заключена в условии. Внимательно читайте его! Задание звучит так: сколько животных идут к реке?

К реке идут кролик, две обезьяны, каждая при этом держит в руках черепаху. К реке идут всего 5 животных, а слоны ни при чем. Итого, правильный ответ Г — к реке идут 5 животных.

Тут опять-таки ответ на загадку заключен в условиях. Внимательно перечитайте его! Пятого ребенка матери зовут Билли.

Ни то, ни другое. Яичные желтки желтые, а не белые!

Ни то, ни другое. Оба весят по килограмму!

Задача не имеет решения: нет никаких данных, которые помогли бы вам ответить на этот вопрос.

Где угодно! Скажем, в Саратове.

Человек. Время суток — это этапы человеческой жизни. В начале жизни ребенок ползает на четырех «ногах». Когда человек становится старше, он ходит на двух ногах. Позже постаревший человек будет ходить на трех «ногах» (две ноги плюс трость, чтобы помочь ему ходить).

«Мы используем только 10% своего мозга» и ещё 4 мифа, которые давно пора забыть

15 способов научить ребёнка понимать текст, запоминать новое и быть внимательнее. Тренируем эффективное чтение вместе

9 советов психолога, как развить у ребёнка силу воли. Педагог Ирина Беляева — о том, откуда берётся сила воли и почему бессмысленно тренировать её с самого рождения

Интересное на «Меле»:

Партнёрский материал

От аэротира до аквамозаики: 25 идей подарков, которым обрадуются дети

Блоги

Знакомьтесь, тапы. Как живут родители, которые не отдают детей в школы

Блоги

«Нашу идею много критиковали». Как школьницы придумали приложение для порядка в аптечке

Детский сад

В саду просят написать заявление об отказе от ужина, потому что я забираю ребёнка раньше. Зачем это нужно?

Вы спрашиваете — «Мел» отвечает

Задача про животных и реку — из разряда «подлых задач». Если ты дашь единственный ответ — легко показать, что он неправильный, независимо от того, какой он.

Кролик шёл к реке и *видел* 6 слонов. Ну и какие у вас основания считать, что слоны ни при чём? Может быть, они тоже шли к реке по той же дороге: начали позади кролика, но двигались быстрее и обогнали его (в этот момент он их и увидел). А может быть, так шли не все слоны, а только некоторые. Итого — к реке двигалось от 0 до 6 слонов.
Кажды слон видел 2 обезьян, идущих к реке. Опять-таки нигде не сказано, что эти обезьяны шли вместе, и ни из чего не следует, что это были одни и те же обезьяны. Например, возможна ситуация, когда к реке шли 4 обезьяны: 2 впереди кролика, 2 позади кролика и слонов. Один слон шёл от реки и встретил 2 «задних» обезьян, остальные слоны шли к реке и обогнали двух «передних» обезьян.
А можно ещё круче: слоны идут не к реке и не от реки, а параллельно реке, каждый на своём расстоянии от неё. К реке движутся 12 обезьян, все с одинаковой скоростью, кролик поочерёдно их догоняет. И как раз там, где он догоняет очередную пару — их путь пересекает очередной слон.
Про черепах всё совсем уж подло. Если черепаху несут, можно ли сказать, что она «идёт»? Зависит от нашего желания. Черепах можно считать, а можно не считать.

Пример на 14: к реке идёт кролик и 5 слонов (которые его обгонят). 6 слон идёт от реки, в противоположном направлении. Впереди слонов со скоростью кролика идут 2 обезьяны (каждый из 5 слонов их обгонит), позади слонов идут другие 2 обезьяны (шестой слон их встретит). Черепахи считаются. 1+5+2+2+2+2 = 14
Пример на 11: Обезьян всего 2 (обе впереди кролика), черепахи считаются, к реке идут все 6 слонов (которые обгонят кролика и обезьян). 1+2+2+6 = 11.
Пример на 8: Обезьян всего 2, черепахи считаются, к реке идут 3 слона (которые обгонят кролика и обезьян), от реки идут другие 3 слона (которые встретят кролика и обезьян). 1+2+2+3 = 8. Ну или можно черепах не считать, а слонов поделить не 3-3, а 5-1.

Вообще, можно соорудить пример на 1+1+12+12 = 26 животных — и этот ответ будет ровно настолько же соответствовать условиям задачи, что и «правильный» 5.

Ссылка на основную публикацию
Adblock
detector