Математические задачи — логика и рассуждения. День рождения

Решение логических задач

Разнообразие логических задач очень велико. Способов их решения тоже немало. Но наибольшее распространение получили следующие три способа решения логических задач:

1. с помощью рассуждений.

3. средствами алгебры логики;

Познакомимся с ними поочередно.

I. Способ решения с помощью рассуждений

Этим способом обычно решают несложные логические задачи.

№1.1. Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: «Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский».

Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?

Решение. Имеется три утверждения:

  1. Вадим изучает китайский;
  2. Сергей не изучает китайский;
  3. Михаил не изучает арабский.

Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно.

Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно.

Остается считать верным третье утверждение, а первое и второе – ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей.

Ответ: Сергей изучает китайский язык, Михаил – японский, Вадим – арабский.

№1.2. Министры иностранных дел России, США и Китая обсудили за закрытыми дверями проекты соглашения о полном разоружении, представленные каждой из стран.

Отвечая затем на вопрос журналистов: «Чей именно проект был принят?», министры дали такие ответы:

Россия – «Проект не наш, проект не США»;

США – «Проект не России, проект Китая»;

Китай – «Проект не наш, проект России».

Один из них (самый откровенный) оба раза говорил правду; второй (самый скрытный) оба раза говорил неправду, третий (осторожный) один раз сказал правду, а другой раз – неправду.

Определите, представителями каких стран являются откровенный, скрытный и осторожный министры.

Решение. Для удобства записи пронумеруем высказывания дипломатов:

Россия – «Проект не наш» (1), «Проект не США» (2);

США – «Проект не России» (3), «Проект Китая» (4);

Китай – «Проект не наш» (5), «Проект России» (6).

Узнаем, кто из министров самый откровенный.

Если это российский министр, то из справедливости (1) и (2) следует, что победил китайский проект. Но тогда оба утверждения министра США тоже справедливы, чего не может быть по условию.

Если самый откровенный – министр США, то тогда вновь получаем, что победил китайский проект, значит оба утверждения российского министра тоже верны, чего не может быть по условию.

Получается, что наиболее откровенным был китайский министр. Действительно, из того, что (5) и (6) справедливы, следует, что победил российский проект. А тогда получается, что из двух утверждений российского министра первое ложно, а второе верно. Оба же утверждения министра США неверны.

Ответ: Откровеннее был китайский министр, осторожнее – российский, скрытнее – министр США.

II. Табличный способ решения

При использовании этого способа условия, которые содержит задача, и результаты рассуждений фиксируются с помощью специально составленных таблиц.

№ 2.1. В симфонический оркестр приняли на работу трёх музыкантов: Брауна, Смита и Вессона, умеющих играть на скрипке, флейте, альте, кларнете, гобое и трубе.

Известно, что:

  • Смит самый высокий;
  • играющий на скрипке меньше ростом играющего на флейте;
  • играющие на скрипке и флейте и Браун любят пиццу;
  • когда между альтистом и трубачом возникает ссора, Смит мирит их;
  • Браун не умеет играть ни на трубе, ни на гобое.

На каких инструментах играет каждый из музыкантов, если каждый владеет двумя инструментами?

Решение: Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как музыкантов трое, инструментов шесть и каждый владеет только двумя инструментами, получается, что каждый музыкант играет на инструментах, которыми остальные не владеют.

Из условия 4 следует, что Смит не играет ни на альте, ни на трубе, а из условий 3 и 5, что

Браун не умеет играть на скрипке, флейте, трубе и гобое. Следовательно, инструменты

Брауна – альт и кларнет. Занесем это в таблицу, а оставшиеся клетки столбцов «альт» и «кларнет» заполним нулями:

Из таблицы видно, что на трубе может играть только Вессон.

Из условий 1 и 2 следует, что Смит не скрипач. Так как на скрипке не играет ни Браун, ни

Смит, то скрипачом является Вессон. Оба инструмента, на которых играет Вессон, теперь определены, поэтому остальные клетки строки «Вессон» можно заполнить нулями:

Из таблицы видно, что играть на флейте и на гобое может только Смит.

Ответ: Браун играет на альте и кларнете, Смит – на флейте и гобое, Вессон – на скрипке и трубе.

№2.2. Три одноклассника – Влад, Тимур и Юра, встретились спустя 10 лет после окончания школы. Выяснилось, что один из них стал врачом, другой физиком, а третий юристом. Один полюбил туризм, другой бег, страсть третьего – регби.

Юра сказал, что на туризм ему не хватает времени, хотя его сестра – единственный врач в семье, заядлый турист. Врач сказал, что он разделяет увлечение коллеги.

Забавно, но у двоих из друзей в названиях их профессий и увлечений не встречается ни одна буква их имен.

Определите, кто чем любит заниматься, в свободное время и у кого какая профессия.

Читать еще:  Дорамы жанра гарем. Смотреть аниме этти

Решение: Здесь исходные данные разбиваются на тройки (имя – профессия – увлечение).

Из слов Юры ясно, что он не увлекается туризмом и он не врач. Из слов врача следует, что он турист.

Буква «а», присутствующая в слове «врач», указывает на то, что Влад тоже не врач, следовательно врач – Тимур. В его имени есть буквы «т» и «р», встречающиеся в слове «туризм», следовательно второй из друзей, в названиях профессии и увлечения которого не встречается ни одна буква его имени – Юра. Юра не юрист и не регбист, так как в его имени содержатся буквы «ю» и «р». Следовательно, окончательно имеем:

Ответ. Влад – юрист и регбист, Тимур – врач и турист, Юра – физик и бегун.

III. Способ решения средствами алгебры логики

Обычно используется следующая схема решения:

  • изучить условие задачи;
  • выделить простые высказывания и обозначить их буквами;
  • записать условие задачи на языке алгебры логики.
  • составить конечную формулу, для этого объединить логическим умножением формулы каждого утверждения, приравнять произведение к единице.
  • упростить формулу.
  • проанализировать полученный результат или составить таблицу истинности, найти по таблице значения переменных, для которых значение функции равно 1.
  • из полученных значений истинности формулы определяются значения истинности введённых логических высказываний, на основании которых делается заключение о решении.

№3.1. Трое друзей, болельщиков автогонок «Формула-1», спорили о результатах предстоящего этапа гонок.

– Вот увидишь, Шумахер не придет первым, – сказал Джон. Первым будет Хилл.

– Да нет же, победителем будет, как всегда, Шумахер, – воскликнул Ник. – А об Алези и говорить нечего, ему не быть первым.

Питер, к которому обратился Ник, возмутился:

– Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину.

По завершении этапа гонок оказалось, что каждое из двух предположений двоих друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто выиграл этап гонки?

Решение. Введем обозначения для логических высказываний: S– победит Шумахер; X – победит Хилл; А – победит Алези.

Реплика Ника «Алези пилотирует самую мощную машину» не содержит никакого утверждения о месте, которое займёт этот гонщик, поэтому в дальнейших рассуждениях не учитывается.

Зафиксируем высказывание каждого из друзей:

Джон:

Ник:

Питер:

Учитывая то, что предположения двух друзей подтвердились, а предположения третьего неверны, запишем и упростим истинное высказывание

Высказывание истинно только при S=1, A=0, X=0

Ответ: Победителем этапа гонок стал Шумахер

№3.2. Андрей, Аня и Маша решили пойти в кино. Каждый из них высказал свои пожелания по поводу выбора фильма.

Андрей сказал: “Я хочу посмотреть французский боевик”.

Маша сказала: “Я не хочу смотреть французскую комедию”.

Аня сказала: “Я хочу посмотреть американскую мелодраму”.

Каждый из них слукавил в одном из двух пожеланий. На какой фильм пошли ребята?

1. Выделим простые высказывания и запишем их через переменные:

А — “Французский фильм”
В — “Боевик”
С — “Комедия”

2. Запишем логические функции (сложные высказывания). Учтем условие о том, что каждый из ребят оказался прав в одном предположении:

а) “Французский боевик” —

б) “Американскую мелодраму” —

в) “Не французская комедия” —

3. 3апишем произведение указанных функций:

4. Упростим формулу:

5. Приравняет результат к единице:

Логические задачи

Сингапурский телеведущий Кеннет Конг опубликовал у себя в фейсбуке логическую задачку для школьников. За два дня пользователи поделились ей более 4400 раз и устроили нешуточные дебаты в комментариях.

Издевательски простая задача, понятная детям и непонятная взрослым. Куда едет автобус?

Дошкольники решают эту задачу за 5-10 минут. У некоторых программистов уходит на неё до часа. Но многие люди, исписав несколько листов бумаги, сдаются.

На решение этой задачи у шестилетнего ребенка уходит обычно не больше 20 секунд. А вот неподготовленных взрослых она часто вводит в ступор. Так какое же число скрыто под машиной?

Гений находит решение за 10 секунд. Билл Гейтс — за 20 секунд. Выпускник Гарварда (Harvard University) — за 40 секунд. Если вы нашли ответ за 2 минуты, то вы принадлежите к 15% наиболее одаренных людей. 75% людей не способны решить эту задачу.

Самодержавный правитель одного острова хотел воспрепятствовать тому, чтобы на острове поселились пришельцы. Желая соблюсти видимость справедливости, он издал распоряжение, согласно которому всякий, желающий поселиться на острове должен, хорошо поразмыслив, высказать любое утверждение, причем после предварительного предупреждения, что от содержания этого утверждения зависит его жизнь. Распоряжение гласило: «Если пришелец скажет правду, его расстреляют. Если он скажет неправду, его повесят». Может ли пришелец стать жителем острова?

Согласно договоренности, порядок утверждения нового проекта, в разработке которого участвуют учреждения А, Б, В, таков: если в утверждении принимают сначала участие А и Б, то должно подключиться к участию и учреждение В. Если утверждение происходит сначала в учреждениях Б и В, присоединяется и учреждение А. Спрашивается: возможны ли такие случаи при утверждении проекта, когда принимали бы в нем участие только учреждения А и В, между тем, как участие учреждения Б не было бы необходимо (при сохранении договоренности о порядке утверждения проектов)?

На острове живут два племени: молодцы. Которые всегда говорят правду, и лжецы, которые всегда лгут. Путешественник встретил островитянина, спросил его, кто он такой, и когда услышал, что он из племени молодцов, нанял его в проводники. Они пошли и увидели вдали другого островитянина, и путешественник послал своего проводника спросить его, к какому племени он принадлежит. Проводник вернулся и сказал, что тот утверждает, что он из племени молодцов. Спрашивается: был проводник молодцом или лгуном?

Перед судом стоят три человека, из которых каждый может быть либо аборигеном, либо пришельцем. Судья знает, что аборигены всегда отвечают на вопросы правдиво, а пришельцы всегда лгут. Однако судья не знает, кто из них абориген, а кто — пришелец. Он спрашивает первого, но не понимает его ответа. Поэтому он спрашивает сначала второго, а потом третьего о том, что ответил первый. Второй говорит, что первый говорил, что он абориген. Третий говорит, что первый назвал себя пришельцем. Кем были второй и третий подсудимые?

Читать еще:  Стильный городской рюкзак: бессменный компаньон для работы, учебы, активного досуга. Как выбрать мужской рюкзак

Жук отправился в путешествие. Он ползет по ленте, длина которой 90 сантиметров. На другом конце ленты, в двух сантиметрах от конца, — цветок. Сколько сантиметров придется ползти жуку до цветка: 88 или 92 (при условии, что ползает он все время по одной стороне и лишь в конце может через торец ленты перебраться на другую сторону)?

Марина долго выбирала, какой кувшинчик купить. Наконец выбрала. Продавщица уложила покупку в коробку. Что купила Марина? Сколько кувшинов продавщица поставила на полки, на каких они стояли раньше?

Турист шел к озеру. Он дошел до перекрестка, откуда вела одна дорога направо, а другая – налево; одна шла к озеру, другая – нет. На перекрестке сидели двое парней, один из них всегда говорил правду, второй всегда лгал. Оба они отвечали на любой вопрос либо «да», либо «нет». Все это было туристу известно, но он не знал, кто из них говорит правду, а кто лжет; он также не знал, какая из дорог ведет к озеру. Турист поставил лишь один вопрос одному из парней. Какой это был вопрос, раз он узнал по ответу, какая дорога ведет к озеру?

В перерыве в классе оставалось девять учеников. Один из них разбил окно. На вопрос учителя были получены следующие ответы:

Сколько треугольников можно насчитать в этой фигуре?

Читайте внимательно и ничего не записывайте: «Торпедо» возглавляет турнирную таблицу, «Спартак» находится на пятом месте, а «Динамо» как раз посередине между ними. Если «Локомотив» опережает «Спартака», а «Зенит» занимает место сразу же за «Динамо», то какая из перечисленных команд находится на втором месте? На раздумье дается 30 секунд.

На предприятии есть три цеха – A, B, C, договорившиеся о порядке утверждения проектов, а именно: 1. Если цех B не участвует в утверждении проекта, то в этом утверждении не участвует и цех A. 2. Если цех B принимает участие в утверждении проекта, то в нем принимают участие цехи A и C. Спрашивается: обязан ли при этих условиях цех C принимать участие в утверждении проекта, когда в утверждении принимает участие цех A?

Кто из этих девяти усачей отправился на «вечернюю прогулку»?

Какую из 7 кнопок надо нажать. Чтобы звонок зазвонил? Рекомендуется найти путь мысленно.

В московском полуфинале первенства Европы по баскетболу, проходившем в советское время, места распределились следующим образом: СССР – 14 очков, Италия и Чехословакия – по 12, Израиль – 11, Финляндия – 10, ГДР и Румыния – по 9 и Венгрия – 7 очков. Согласно положению. Каждая команда за выигрыш получала 2 очка, за поражение – 1 очко, за неявку – 0 очков. Ничьи не допускались. Составьте сводную таблицу результатов игр, если известно, что команда Финляндии выиграла у команды Италии и проиграла команде Румынии.

Во вторник около 10 часов утра в комнату инспектора Варнике ворвался незнакомец. Он был крайне возбужден. Руки его дрожали, взъерошенные волосы торчали во все стороны. Через несколько минут, закурив сигарету и успокоившись, посетитель начал свой рассказ: — Сегодня утром я вернулся из отпуска. Всю ночь мне пришлось трястись в поезде. Я не выспался и, придя домой, решил прилечь на диван. От усталости я не сразу заметил, что из комнаты исчез рояль, а журнальный столик и кресло сдвинуты с места. На этом листе бумаги я начертил план расположения мебели в комнате до моего отъезда. — Вот что, уважаемый, — сказал инспектор Варнике, бегло взглянув на рисунок, — Прежде всего мне совершенно ясно, что рояля у Вас вообще не было. А теперь давайте выясним, зачем Вам понадобилась эта ложь. Почему инспектор Варнике усомнился в правдивости рассказа посетителя?

ЗАДАЧИ НА ЛОГИКУ

Логические задачи, так же как и математику, называют «гимнастикой ума». Но, в отличие от математики, задачи на логику — это занимательная гимнастика, которая в увлекательной форме позволяет испытывать и тренировать мыслительные процессы, иногда в неожиданном ракурсе. Для их решения нужна сообразительность, иногда интуиция, но не специальные знания. Решение задач на логику состоит в том, чтобы досконально разобрать условие задачи, распутать клубок противоречивых связей между персонажами или объектами. Логические задачи для детей – это, как правило, целые истории с популярными действующими лицами, в которые нужно просто вжиться, почувствовать ситуацию, наглядно ее представить и уловить связи.

Даже самые сложные задачи на логику не содержат чисел, векторов, функций. Но математический способ мышления здесь необходим: главное, осмыслить и понять условие логической задачи. Не всегда самое очевидное решение, лежащее на поверхности, является правильным. Но чаще всего, решение задачи на логику оказывается гораздо проще, чем кажется на первый взгляд, несмотря на путаное условие.

Интересные задачи на логику для детей по самым разным предметам — математике, физике, биологии — вызывают у них повышенный интерес к этим учебным дисциплинам и помогают в их осмысленном изучении. Логические задачи на взвешивание, переливание, задачи на нестандартное логическое мышление помогут и в повседневной жизни решать житейские проблемы нестандартным образом.

В процессе решения задач на логику вы познакомитесь с математической логикой — отдельной наукой, именуемой по-другому «математикой без формул». Логика как наука была создана Аристотелем, который был не математиком, а философом. И логика первоначально была частью философии, одним из методов рассуждений. В труде «Аналитики» Аристотель создал 20 схем рассуждений, которые назвал силлогизмами. Одним из самых известных его силлогизмов является: «Сократ — человек; все люди смертны; значит Сократ смертен». Логика (с др.-греч. Λογική — речь, рассуждение, мысль) — это наука о правильном мышлении, или, иными словами, «искусство рассуждения».

Читать еще:  Мальчики и девочки: сравнительная характеристика. Девочки-мальчики и их взаимодействие

Существуют определенные приемы решения логических задач:

способ рассуждений, с помощью которого решаются самые простые логические задачи. Этот метод считается самым тривиальным. В ходе решения используются рассуждения, последовательно учитывающие все условия задачи, которые постепенно приводят к выводу и правильному ответу.

способ таблиц, применяемый при решении текстовых логических задач. Как следует из названия, решение логических задач заключается в построении таблиц, которые позволяют наглядно представить условие задачи, контролировать процесс рассуждений и помогают сделать правильные логические выводы.

способ графов состоит в переборе возможных вариантов развития событий и окончательном выборе единственно верного решения.

способ блок-схем — метод, широко используемый в программировании и решении логических задач на переливание. Он заключается в том, что сначала в виде блоков выделяются операции (команды), затем устанавливается последовательность выполнения этих команд. Это и есть блок-схема, которая по сути является программой, выполнение которой приводит к решению поставленной задачи.

способ бильярда следует из теории траекторий (один из разделов теории вероятности). Для решения задачи необходимо нарисовать бильярдный стол и интерпретировать действия движениями бильярдного шара по разным траекториям. При этом необходимо вести записи возможных результатов в отдельной таблице.

Каждый из этих методов применим к решению логических задач из разных областей. Эти, казалось бы, сложные и научные приемы вполне можно использовать в решении задач на логику для 1, 2, 3, 4, 5, 6, 7, 8, 9 классов.

Представляем вам самые разнообразные логические задачи для 1, 2, 3, 4, 5, 6, 7, 8, 9 класса. Мы подобрали для вас наиболее интересные задачи на логику с ответами, которые будут интересны не только детям, но и родителям.

Рекомендации для родителей:

  • подбирайте для ребенка задачи на логику в соответствии с его возрастом и развитием
  • не торопитесь открыть ответ, позвольте ребенку самому найти решение логическойзадачи. Пусть он сам дойдет до правильного решения и вы увидите — какое удовольствие и чувство восторга у него возникнет при совпадении его ответа с данным.
  • в процессе решения задач на логику допустимы наводящие вопросы и косвенные подсказки, указывающие направление размышления.

С помощью нашей подборки логических задач с ответами вы действительно научитесь решать логические задачи, расширите свой кругозор и значительно разовьете логическое мышление. Дерзайте.

Решение логических задач — первый шаг к развитию ребенка.

Логика — это искусство приходить к непредсказуемому выводу.

Без логики почти невозможно внесение в наш мир гениальных находок интуиции.

Человек, рассуждающий логично, приятно выделяется на фоне реального мира.

Логика — это нравственность мысли и речи.

5 олимпиадных задач на логику, которые увлекут всю семью

Начальная школа — самое время для того, чтобы заинтересовать ребенка математикой — строгой и прекрасной царицей всех наук.

Чтобы увлечь ребенка предметом, «Летидор» попросил создателей онлайн-олимпиад «Я люблю математику» — команду «Яндекс.Учебника» — подобрать пять задач, которые нельзя решить, используя шаблонные алгоритмы и стандартный подход.

Попробуйте решить эти задания сами, а затем предложите их детям. К каждой задаче мы прикладываем советы методистов, которые помогут вам направить рассуждения (свои и ребенка) в нужное русло.

скриншот из олимпиадных заданий «Яндекс.Учебника»

Комментарий методиста

Это задача относится к типу «Задачи на разрезание». Они не имеют универсального метода решения, для их решения нужно только проявить смекалку и способности к творческому мышлению. Подобные задания имеют различный уровень сложности. Можно подобрать их как для дошкольников, так и для взрослых.

Если эта задачка покажется ребенку слишком легкой, вы без труда сможете придумать для него аналогичную, но более сложную. Для этого вам понадобится лист в клеточку, карандаш и ластик. Лучше начинать с простых фигур (сначала тренироваться разрезать только прямоугольники) и только потом переходить к более сложным симметричным (наподобие этой) фигурам.

Ответ к задаче №1

скриншот из олимпиадных заданий «Яндекс.Учебника»

скриншот из олимпиадных заданий «Яндекс.Учебника»

Комментарий методиста

Эта задача относится к типу «Магический квадрат» — это таблица с одинаковым количеством строк и столбцов, которые заполнены различными числами так, чтобы суммы каждых столбцов, строк и диагоналей были одинаковыми. Головоломка судоку берет начало именно из этой задачи. Если ребенок не знает подходов к ее решению, то он будет подбирать числа.

Не существует единого алгоритма решения, бывают квадраты с несколькими правильными ответами, и даже заполнить пустой квадрат числами от 1 до 9 — уже интересная задача.

С такими квадратами можно много играть, но есть несколько правил, помогающих решать квадраты 3х3.

Первое: если мы возьмем все числа, которыми должен быть заполнен квадрат, и расставим их по возрастанию, то число, стоящее в центре ряда, всегда будет соответствовать числу в центре квадрата. Поскольку здесь стоит шестерка, то речь идет о последовательности от 2 до 10. Значит 0 и 1 здесь не используются.

Второе правило: самое большое число не может стоять в углу.

Третье правило: в двух диагоналях, среднем столбце и средней строке числа равноудалены друг от друга. В этой задаче мы уже видим сумму по диагонали, поэтому методом подбора решить ее довольно просто.

Спроектировать такую задачу самому не так легко, но знание этих трех правил сильно ускорит процесс. Затем можно стереть числа и предложить решить ее ребенку.

Источники:

http://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/516600/
http://www.profguide.io/myshlenie/category/logic/
http://letidor.ru/obrazovanie/5-olimpiadnykh-zadach-na-logiku-kotorye-uvlekut-vsyu-semyu.htm

Ссылка на основную публикацию
Adblock
detector