Мощность солнечного излучения по регионам. Использование солнечной энергии

Содержание

Солнечная энергия

Опубликовано 07 Сен 2015
Рубрика: О жизни | 19 комментариев

Слияние атомов водорода и рождение атомов гелия, происходящее в недрах звезд из-за невероятно огромного давления, вызванного суперсилами гравитации, сопровождается сверхмощным выделением энергии. Идет термоядерная реакция и на ближайшей к нам звезде по имени Солнце.

Солнечная энергия (точнее — крохотная доля от всей, излученной Солнцем в пространство энергии) достигает Земли и обеспечивает существование жизни на нашей планете в том виде, в каком мы ее знаем.

Интенсивность излучения Солнца «на входе» в атмосферу Земли составляет 1,367 КВт/м 2 .

Атмосфера планеты поглощает часть потока солнечной энергии. На разных широтах, в разное время года, в разное время суток, на разной высоте над уровнем моря и при различной облачности мощность солнечного изучения, приходящаяся на один квадратный метр поверхности перпендикулярной лучам составляет

от 0 КВт/м 2 до 1,0 КВт/м 2 .

Почему солнечное излучение имеет различную интенсивность можно понять, рассмотрев рисунок ниже.

В различных условиях лучам Солнца приходится преодолевать до поверхности Земли через атмосферу разные расстояния! Чем длиннее путь лучей Солнца через атмосферу, тем больше поглощение, тем меньше энергии дойдет до поверхности, до точки А.

1,0 КВт/м 2 – это максимум интенсивности в ясную погоду на уровне моря в истинный астрономический полдень на экваторе в дни весеннего (

20 марта) и осеннего (

22 сентября) равноденствий!

Это означает, что никакое устройство, созданное человеком для преобразования солнечной энергии в тепловую или электрическую, имеющее рабочую площадь 1,0 м 2 никогда не выдаст мощность более 1,0 КВт!

В средних широтах России солнечная энергия имеет интенсивность потока летом в ясный полдень – до 0,8 КВт/м 2 , зимой – всего лишь до 0,3 КВт/м 2 .

По справочным таблицам (смотри ссылки в конце статьи) в среднем за год количество солнечной энергии, падающей на горизонтальную площадку площадью 1м 2 :

На момент написания статьи, к примеру, в Омске цена 1 КВт*ч электроэнергии составляла 3,32 руб. для населения. Образно выражаясь, можно сказать, что Солнце «высыпает» в год в Омске на каждый квадратный метр 4183,20 руб. (11,46 руб. ежедневно) в переводе на стоимость электроэнергии.

Задача и проблема – собрать это богатство.

Солнечная электроэнергия.

Для преобразования энергии Солнца в электроэнергию на сегодняшний день наиболее эффективными являются кремниевые фотоэлектрические батареи. Но их КПД низок и по факту не превышает 14%.

Таким образом, панель площадью 1,0 м 2 способна выдать на широте Москвы максимальную мощность порядка 0,11 КВт. И не верьте недобросовестным продавцам, завышающим показатели мощности!

Низкий КПД по большому счету ни о чем не говорит (ездим же мы на автомобилях, двигатели которых имеют КПД=10%). Ставь панель большей площади – и всё. Однако высокая стоимость полного комплекта солнечной электростанции (с панелями, аккумуляторами, автоматикой, преобразователями

1100 $/КВт) продолжает являться в России сдерживающим широкое распространение солнечных панелей фактором. Конечно, в местах, где другим способом получить электроэнергию невозможно или очень сложно и дорого (космос, кемпинг, дом лесника, не электрифицированный поселок), солнечная электростанция является хорошим решением проблемы.

К 2030 году прогнозируемая мощность всех солнечных фотоэлектрических преобразователей в мире превысит 200 ГВт. При этом стоимость произведенной электрической энергии предполагается 0,10…0,15 $/КВт*ч.

Солнечная тепловая энергия.

Очень популярной последние десятилетия стала тема получения тепловой энергии для горячего водоснабжения и отопления помещений от Солнца. Сотни компаний по всему миру предлагают свои разработки солнечных коллекторов, тысячи энтузиастов изготавливают разнообразные варианты устройств в домашних мастерских.

Одними из перспективных на сегодняшний день, возможно, видятся вакуумированные трубчатые коллекторы, у которых КПД достигает 90% (по заявлениям производителей и продавцов). Холодный воздух вентилятором забирается из помещения и по теплоизолированной трубе поступает в коллектор. Нагретый в результате теплообмена воздух возвращается по такой же трубе обратно в помещение. Солнечная энергия по очень простой и эффективной схеме преобразуется в тепловую! Установка не боится морозов, потому что замерзать в ней нечему.

Рассмотрим подробнее модель солнечного коллектора китайской компании ZN-ENERGY (www.pcmworld.com, подключисолнце.рф). Результаты практических испытаний любезно предоставил Алексей Пыкин из города Улан-Удэ.

Алексей установил наклонно с ориентацией на юг два коллектора марки ZN-20D58-1800 на крыше сарайчика, присоединил к ним подводящую и отводящую воздух трубы, включил в схему вентилятор, подключил прибор, записывающий температуры входящего в коллектор воздуха и выходящего и замерил скорость воздушного потока на выходе из отводящей трубы в помещение.

Габаритно-массовые параметры одного коллектора:

Высота – 2030 мм

Ширина – 1550 мм

Толщина – 180 мм

Оба коллектора собраны из 20 стеклянных вакуумных трубок длиной 1800 мм.

Между наружной трубкой Ø57 мм и первой внутренней трубкой Ø47 мм откачан воздух и создан вакуум для обеспечения высокого уровня теплоизоляции.

Поверхность трубки Ø47 мм имеет черное покрытие с очень большим коэффициентом поглощения (>0,9) солнечной энергии. Именно эта поверхность, разогреваясь под лучами Солнца, отдает всю полученную энергию внутрь трубки Ø47 мм, проходящему через нее воздуху и аккумулятору тепла – РСМ-цилиндру! Передаче тепла наружу в окружающее пространство препятствует вакуум.

РСМ-цилиндр – это еще одна внутренняя трубка с веществом, накапливающим и затем отдающим тепло за счет фазового перехода из одного агрегатного состояния в другое. По-простому — это «высокоэффективные камни в печке в бане».

Теоретическая мощность установки.

1. Эффективная площадь поверхности двух коллекторов марки ZN-20D58-1800

A =0,047*1,8*20*2=3,384 м 2

Те, кто считают площадь иначе, как поверхность полуцилиндра, или лукавят, или заблуждаются. В подтверждение своей правоты кроме здравого смысла в понимании процесса могу добавить, что известная компания Viessmann (Германия) площадь своих коллекторов на трубках считает по вышеприведенной формуле.

2. Максимальный заявляемый разработчиками коэффициент полезного действия коллекторов

КПД =0,9

3. Максимальная интенсивность потока в июне-июле в ясный полдень на широте г. Улан-Удэ

Ie =0,8 КВт/м 2

4. Максимальная мощность, которую могут развить два коллектора, установленные плоскостями перпендикулярно лучам Солнца

NΣтеор = Ie * A * КПД =0,8*3,384*0,9=2,436 КВт

5. Максимальная мощность, которую может развить одна трубка

Практическая мощность установки.

Выполним расчет в Excel мощности установки по исходным данным, присланным Алексеем.

Читать еще:  Куда делся захар из дома 2. Биография. Биография Захара Саленко

О цветах ячеек листа Excel, применяемых в статьях этого блога, можно посмотреть на странице « О блоге ».

Расчет в Excel выполняется по следующим формулам:

7. V =π* D 2 /4* vср

8. G = V * ρ

9. N = G * c *( t2 — t1 )

11. Q = N * τ

12. mд = Q / qд

Установка Алексея в июньский солнечный полдень забирает из помещения воздух температурой 25 °С и, прогоняя его через два коллектора, выдает обратно в помещение нагретым до 138 °С!

Рассчитанная через количество нагретого воздуха мощность, достигаемая в этот момент времени – 2,307 КВт. Это 95% от рассчитанной теоретической мощности.

В нижней части таблицы можно определить количество тепловой энергии, которое выработает установка за заданное время, работая с вычисленной мощностью.

В самом низу таблицы я привел для справки расчет массы дров, которую необходимо сжечь для получения такого же количества энергии.

Для расчета суточного производства тепловой энергии следует проинтегрировать функцию мощности по времени.

Q =∫ N ( τ ) d τ

О том, как это делать рассказано в предыдущей статье на блоге.

В этой небольшой обзорной статье не ставилась цель подробно расписать все возможные варианты преобразования солнечной энергии в другие виды. Тем более не хотелось углубляться в разнообразие теплофизических аспектов и конструктивных решений конкретных моделей солнечных панелей и коллекторов. Совсем не был затронут вопрос углов установки панелей и коллекторов…

Главное, что хотелось донести:

1. Более 1,0 КВт мощности с панели или коллектора с рабочей площадью 1,0 м 2 не «снять»!

2. Более 0,14 КВт современная фотоэлектрическая батарея площадью 1,0 м 2 пока не вырабатывает!

3. Более 0,9 КВт солнечный коллектор с рабочей площадью 1,0 м 2 выдать сегодня не может и не сможет, наверное, никогда, если на Солнце что-нибудь не случиться! А если случится, то нам уже эта энергия не понадобится…

4. РСМ-цилиндры накапливают тепло, которое не смог забрать продуваемый воздух и отдают его воздуху в моменты закрытия Солнца облаками и перед закатом. Увеличить мощность РСМ-цилиндры не могут. Они, как ресиверы в системах сжатого воздуха, сглаживают колебания выходной мощности и не более того.

5. Если (с поправкой на оптимальный угол установки коллекторов) за год в г. Омске поступает от Солнца

1500 КВт*ч/м 2 , то установка из двух коллекторов, рассмотренная в примере, сможет выдать тепловой энергии около 4 300 КВт*ч.

В переводе на стоимость электроэнергии мы получим в год тепловой энергии на 14276 руб. Комплект коллекторов стоит около 120000 руб. Срок окупаемости более 8 лет…

В переводе на стоимость дров (1,50 руб./кг или 1000 руб./м 3 ) мы получим в год тепловой энергии на

3000 руб. (если принять КПД печи равным 50%). Срок окупаемости – 40 лет!

И это еще без учета затрат электроэнергии на вентилятор!

Не знаю, сколько прослужат коллектора, но жизненный опыт подсказывает, что град размером с куриное яйцо бывает у нас каждые 3…5 лет…

Однако, стоит отметить, что солнечная энергия – экологически чистый вид энергии. Расширяя ее применение, мы сохраняем нашу среду обитания. И стоит помнить, что расходуя всего 1 КВт*ч энергии, можно испечь 100 булок хлеба или выткать 10 м 2 ткани!

В заключении приведу несколько ссылок на качественные и просто интересные материалы по затронутой тематике:

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Ссылка на скачивание файла: solnechnaya-energiya (xls 20,5KB).

Комментарии к статье, уважаемые читатели, пишите в блоке, расположенном ниже. Не стесняйтесь высказать свое мнение!

Примеры использования энергии Солнца на Земле. Солнечные электростанции. Солнечная энергетика

Издавна люди говорили о Солнце как о могучем и великом, возвышая его в своих религиях до одушевленного объекта. Светилу поклонялись, ему возносили хвалу, им мерили время и всегда считали его первоисточником земных благ.

Необходимость в солнечной энергии

Прошли тысячелетия. Человечество вступило в новую эру своего развития и пользуется плодами бурно развивающегося технологического прогресса. Однако и по сегодняшний день именно Солнце представляет собой основной природный источник тепла, а, следовательно, и жизни.

Как человечество использует Солнце в повседневной своей деятельности? Рассмотрим этот вопрос подробнее.

«Работа» Солнца

Небесное светило служит единственным источником той энергии, которая нужна для проведения фотосинтеза растений. Солнце приводит в движение круговорот воды, и только благодаря ему на нашей планете имеются все известные человечеству ископаемые виды топлива. И еще люди пользуются силой этой яркой звезды для того, чтобы обеспечить свои потребности в электрической и тепловой энергии. Без этого жизнь на планете была бы просто невозможна.

Основной источник энергии

Природа мудро заботится о том, чтобы человечество получало от небесного светила его дары. Доставка к Земле солнечной энергии осуществляется путем передачи радиационных волн на поверхность материков и вод. Причем до нас из всего посылаемого спектра доходят только:

1. Ультрафиолетовые волны. Они невидимы для человеческого глаза и составляют примерно 2% в общем спектре.

2. Световые волны. Это примерно половина энергии Солнца, которая достигает поверхности Земли. Благодаря световым волнам человек видит все краски окружающего его мира.

3. Инфракрасные волны. Они составляют примерно 49% спектра и нагревают поверхность воды и суши. Именно эти волны и являются наиболее востребованными в вопросах использования энергии Солнца на Земле.

Принцип преобразования инфракрасных волн

Каким образом происходит процесс использования энергии Солнца на Земле? Как и любое другое подобное действие, он осуществляется по принципу прямого превращения. Для этого нужна только специальная поверхность. Попадая на нее, солнечный свет проходит процесс превращения в энергию. Для получения тепла в этой схеме должен быть задействован коллектор. Он поглощает инфракрасные волны. Далее в устройстве, использующем энергию Солнца, непременно присутствуют накопители. Для нагревания конечного продукта устраивают специальные теплообменники.

При получении электрической энергии используются специальные фотоэлементы. Они принимают лучи света на свою поверхность. Далее солнечные установки производят из них электричество.

Практическое применение

Существуют многочисленные примеры использования энергии Солнца на Земле. Потребность человека в электроэнергии удовлетворяется благодаря применению новейших технологий. Где же используется этот природный источник?

2. Энергия Солнца находит свое применение в дымоходах и пассивных системах вентиляции, где происходит конвекция нагретого световыми волнами воздуха.

3. При помощи Солнца человек научился опреснять морскую воду. Испарителем при этом выступает небесное светило. Опресненная вода идет на нужды промышленности, сельского хозяйства, находит свое применение в быту.

4. Солнечная энергия помогает людям сушить и пастеризовать пищу.

5. Используется этот источник и в космосе. Благодаря энергии Солнца обеспечивается работоспособность спутников и межпланетных станций.

6. Самые простые и маломощные источники электрического тока, действие которых основано на использовании энергии солнечных лучей, – современные калькуляторы.

Новое направление энергетического комплекса

На сегодняшний день человечество внедряет в практику и успешно развивает устройства, позволяющие ему добывать свет и тепло без использования угля, нефти и газа. В народном хозяйстве многих государств возникла новая подотрасль – солнечная энергетика. Это одно из направлений нетрадиционной энергетики. В ее основе лежит принцип непосредственного использования излучения Солнца.

Читать еще:  Буква «ты». Алексей Пантелеев. План-конспект урока по чтению (1 класс) на тему: Литературное слушание Л. Пантелеев Буква «ты

Цель, которую преследует солнечная энергетика, – получение столь необходимого для человечества тепла и света. Новую отрасль порой называют гелиоэнергетикой. Ведь Helios в переводе с греческого – Солнце.

Работа комплекса

Теоретически каждый из нас может произвести расчет солнечной установки. Ведь известно, что, пройдя путь от единственной звезды нашей галактической системы до Земли, поток световых лучей принесет с собой энергетический заряд, равный 1367 Вт на квадратный метр. Это так называемая солнечная постоянная, которая существует на входе в атмосферные слои. Такой вариант возможен только при идеальных условиях, которых в природе просто не существует. После прохождения атмосферы солнечные лучи принесут на экватор 1020 Вт на квадратный метр. Но из-за смены дневного и ночного времени суток мы сможем получить в три раза меньшее значение. Что касается умеренных широт, то здесь меняется не только длительность светового дня, но и сезонность. Таким образом, получение электроэнергии в местах, далеких от экватора, при расчете нужно будет уменьшить еще в два раза.

География излучений небесного Светила

Где может достаточно эффективно работать солнечная энергетика? Природные условия для размещения установок играют немаловажную роль в этой развивающейся отрасли.
Распределение солнечного излучения на поверхности Земли происходит неравномерно. В одних регионах луч Солнца – долгожданный и редкий гость, в других он способен угнетающе воздействовать на все живое.

То количество солнечного излучения, которое получает тот или иной район, зависит от широты его нахождения. Самые большие дозы энергии природного светила получают государства, находящиеся рядом с экватором. Но и это еще не все. Объем солнечного потока зависит от количества ясных дней, которые изменяются при переходе от одной климатической зоны к другой. Увеличить или уменьшить степень излучения способны воздушные потоки и прочие особенности региона. Преимущества энергии Солнца более всего знакомы:

— странам северо-восточной Африки и некоторым юго-западным и центральным областям континента;
— жителям Аравийского полуострова;
— восточному побережью Африки;
— северо-западной Австралии и некоторым островам Индонезии;
— западному побережью Южной Америки.

Что касается России, то, как показывают произведенные на ее территории замеры, наибольшим дозам солнечного излучения радуются районы, граничащие с Китаем, а также северные зоны. А где в нашей стране Солнце обогревает Землю меньше всего? Это северо-западный регион, в который входит Санкт-Петербург и прилегающие к нему области.

Электростанции

Сложно представить себе нашу жизнь без использования энергии Солнца на Земле. Как применить ее? Использовать лучи света можно для выработки электричества. Потребность в нем растет с каждым годом, а запасы газа, нефти и угля сокращаются стремительными темпами. Именно поэтому в последние десятилетия люди стали строить солнечные электростанции. Ведь эти установки позволяют использовать альтернативные источники энергии, значительно экономя природные ископаемые.

Солнечные электростанции работают благодаря встроенным в их поверхность фотоэлементам. Причем в последние годы удалось значительно повысить КПД работы таких систем. Солнечные установки стали выпускать из новейших материалов и с использованием креативных инженерных решений. Это значительно увеличило их мощность.

Солнечные электростанции могут иметь различные размеры. Самые небольшие из них – частные. В этих системах предусмотрено всего несколько солнечных панелей. Самые большие и сложные установки занимают площади, превышающие десять квадратных километров.

Все солнечные электростанции делят на шесть типов. Среди них:

— башенные;
— установки с фотоэлементами;
— тарельчатые;
— параболические;
— солнечно-вакуумные;
— смешанные.

Самым распространенным типом электростанции является башенный. Это высокая конструкция. Внешне она напоминает башню с расположенным на ней резервуаром. Емкость наполнена водой и выкрашена в черный цвет. Вокруг башни находятся зеркала, площадь которых превышает 8 квадратных метров. Вся эта система подключена к единому пульту управления, благодаря которому можно направлять угол наклона зеркал таким образом, чтобы они постоянно отражали солнечный свет. Лучи, направленные на резервуар, нагревают воду. Система выдает пар, который и направляется для выработки электроэнергии.

При работе электростанций фотоэлементного типа используются солнечные батареи. Сегодня подобные установки стали особенно популярными. Ведь солнечные батареи могут быть установлены небольшими блоками, что позволяет применять их не только для промышленных предприятий, но и для частных домов.

Тарельчатые станции работают так же, как и те, которые относят к башенному и параболическому типу. Отличия кроются лишь в конструктивных особенностях установки. На первый взгляд она похожа на металлическое дерево огромных размеров, листьями которого являются плоские зеркала круглой формы. В них и концентрируется солнечная энергия.

Необычный способ получения тепла использован в солнечно-вакуумной электростанции. Ее конструкция представляет собой участок земли, накрытый круглой крышей. В центре этого сооружения возвышается полая башня, в основании которой и установлены турбины. Вращение лопастей такой электростанции происходит благодаря потоку воздуха, который возникает при разности температур. Стеклянная крыша пропускает лучи Солнца. Они нагревают землю. Температура воздуха внутри помещения повышается. Разность показаний столбиков термометров внутри и снаружи и создает воздушную тягу.

Солнечная энергетика задействует и электростанции смешанного типа. О таких системах можно говорить в тех случаях, когда, например, на башнях применяются дополнительные фотоэлементы.

Достоинства и недостатки солнечной энергетики

У каждой отрасли народного хозяйства есть свои положительные и отрицательные стороны. Имеются они и при использовании световых потоков. Плюсы солнечной энергетики заключены в следующем:

— экологичность, ведь она не загрязняет окружающую среду;
— доступность основных составляющих – фотоэлементов, которые реализуются не только для промышленного применения, но и для создания личных небольших электростанций;
— неисчерпаемость и самовосстанавливаемость источника;
— постоянно снижающаяся себестоимость.

Среди недостатков солнечной энергетики можно выделить:

— влияние времени суток и погодных условий на производительность электростанций;
— необходимость в аккумулировании энергии;
— снижение производительности в зависимости от широты, на которой расположен регион, и от времени года;
— большой нагрев воздуха, который имеет место на самой электростанции;
— потребность в периодической чистке от загрязнения, в которой нуждается система солнечных батарей, что проблематично в связи с огромными площадями, на которых установлены фотоэлементы;
— относительно высокая стоимость оборудования, которая хоть и снижается с каждым годом, но пока еще недоступна для массового потребителя.

Перспективы развития

Каковы дальнейшие возможности использования энергии Солнца на Земле? На сегодняшний день этому альтернативному комплексу пророчат большое будущее.

Перспективы солнечной энергетики радужны. Ведь уже сегодня в этом направлении идут огромные по своим масштабам работы. Каждый год в различных странах мира появляется все больше и больше солнечных электростанций, размеры которых поражают своими техническими решениями и масштабами. Кроме того, специалисты данной отрасли не прекращают проводить научные исследования, цель которых – многократное увеличение коэффициента полезного действия используемых на таких установках фотоэлементов.

Развитие солнечной энергетики идет достаточно высокими темпами. Люди серьезно озабочены проблемой истощения природных ресурсов и занимаются выявлением альтернативных источников тепла и света. Такое решение позволит предупредить неизбежный для человечества энергетический кризис, а также надвигающуюся экологическую катастрофу.

Читать еще:  Симоронские ритуалы на работу – пусть работа сама найдет вас. Симорон на работу — примеры действенных ритуалов

Варианты использования солнечной энергии в хозяйственной деятельности

Энергия солнца представляет собой поток фотонов и имеет огромное значение для всего живого на нашей планете. Солнце обеспечивает существование жизни на Земле, влияя на основополагающие процессы в биосфере. Благодаря солнцу нагреваются моря, реки, поверхность планеты, дует ветер и так далее. Человек уже давно стал использовать свет от солнца в своей хозяйственной деятельности. Но альтернативная энергетика оформилась в качестве самостоятельной отрасли не так давно. Между тем солнечная энергия играет всё более важную роль в хозяйственной деятельности. Как источник тепла солнце используется давно, а в последнее время появляется большое количество устройств и систем для этого. Сегодня мы поговорим о том, как человек использует солнечную энергию.

Где используется солнечная энергия?

Использование солнечной энергии ежегодно увеличивается. Не так давно энергия солнца использовалась для нагрева воды на даче в летнем душе. А сегодня различные установки уже используются для обогрева частных домов, в градирнях. Солнечные батареи вырабатывают электричество, необходимое для обеспечения энергией небольших посёлков.

  • Авиация и космическая отрасль;
  • Сельское хозяйство. Отопление и обеспечение электричеством теплиц, ангаров и прочих хозяйственных построек;
  • Использование солнечной энергии в быту (отопление и электрификация жилых домов);
  • Электроснабжение объектов медицины и спорта;
  • Использование солнечной энергии для освещения городских объектов;
  • Электрификация небольших населённых пунктов.

Использование первых образцов солнечных модулей подтвердило, что энергия солнца имеет существенные плюсы по сравнению с традиционными источниками. Основные преимущества гелиосистем – это практически неограниченный запас, отсутствие вреда окружающей среде, а также бесплатное использование.

Этот список плюсов стоит расширить:

  • Стабильное питание, поскольку ток от гелиобатарей не имеет скачков напряжения;
  • Автономная работа гелиосистем. Для них не требуется внешней инфраструктуры;
  • Срок службы более 20 лет;
  • Гелиосистемы практичны и просты в эксплуатации. Основные вложения делают при монтаже.

Особенности использования солнечной энергии

Фотоэнергия излучения солнца преобразуется в фотоэлектрических элементах. Это двухслойная структура, состоящая из 2 полупроводников различного типа. Полупроводник внизу – это p-тип, а верхний − n-тип. У первого недостаток электронов, а у второго − избыток.

Электроны полупроводника n-типа поглощают солнечное излучение, в результате чего электроны в нём сходят с орбиты. Силы импульса хватает для перехода в полупроводник p-типа. В результате возникает направленный поток электроном и генерируется электричество. При производстве фотоэлементов используется кремний.

На сегодняшний день выпускаются несколько видов фотоэлементов:

  • Монокристаллические. Они выпускаются из монокристаллов кремния и имеют равномерную кристаллическую структуру. Среди остальных типов выделяются самым высоким КПД (около 20 процентов) и увеличенной стоимостью;
  • Поликристаллические. Структура поликристаллическая, менее равномерная. Стоят дешевле и имеют КПД от 15 до 18 процентов;
  • Тонкопленочные. Эти фотоэлементы изготовлены напылением на гибкую подложку аморфного кремния. Такие фотоэлементы дешевле всего, но и КПД у них оставляет желать лучшего. Они используются при производстве гибких солнечных панелей.

Как человек использует солнечную энергию?

Можно выделить две группы систем, которые используются человеком для преобразования энергии солнца в тепловую и электрическую. Это пассивные и активные системы.

Среди примеров пассивных систем для использования энергии солнца можно назвать некоторые строения. При их возведении применялись строительные материалы, имеющие высокую величину поглощения светового излучения. Причём эти строения возводятся с учётом особенностей климата, в котором они построены. Материалы, из которых построены эти дома, используют энергию солнца для освещения и обогрева помещений в здании. В частности, это деревянные полы, светопоглощающие панели, изоляция, ориентация дома на южную сторону.

Благодаря своей конструкции, пассивные системы достигают максимально выгодного использования световой энергии. В результате, за счёт снижения расходов на коммунальные расходы такие дома себя быстро окупают. Эти строения независимы в энергетическом плане и не загрязняют окружающую среду.

Тепловые коллекторы

Эти устройства используют излучение солнца для преобразования его в тепло. Можно выделить следующие основные виды коллекторов:

Плоские. Они наиболее распространены. Их используют как для отопления, так и для горячего водоснабжения. Обычно такие коллекторы используют только в летнее время, поскольку зимой их эффективность резко падает. Об изготовлении таких солнечных коллекторов своими руками можно прочитать по ссылке;

  • Вакуумные. Сфера их использования, как и у плоских. Но они используются, когда требуется горячая вода более высокой температуры. В них трубки теплообменника находятся в вакууме внутри стеклянных трубок. Внутри циркулирует теплоноситель. Как правило, такие установки делаются на производстве, а не в домашних условиях. Они функционируют круглый год, даже в российском климате;
  • Воздушные. Сфера использование таких устройств – это воздушное отопление и осушительные установки. Могут использоваться при температуре на улице не ниже 5─10 градусов Цельсия;
  • Интегрированные коллекторы. Наиболее простая конструкция. Это специальные баки с теплоизоляцией, где нагревается вода. В дальнейшем она используется на хозяйственные нужды.

В большинстве случаев все эти установки устанавливаются на крышах или фасадах зданий. Иногда для них выделяется площадка, где присутствует максимальное солнечное освещение.
Вернуться к содержанию

Солнечные батареи

Эти устройства используют излучение солнца для преобразования его в электрическую энергию. Для этого используются фотоэлектрические элементы. При попадании на них света они вырабатывают электрическую энергию. Один такой фотоэлемент имеет маленькую мощность. Поэтому их последовательно соединяют в батареи. Часто умельцы занимаются созданием таких солнечных батарей своими руками. Подробнее об этом можно прочитать по ссылке.

Солнечные электростанции

В тех регионах мира, где высокая солнечная инсоляция, делают не просто одиночные гелиостанции, а настоящие электростанции промышленного масштаба. Они вырабатывают электричество, объёма которого хватает для обеспечения энергией небольших населённых пунктов. Многие южные страны уже имеют большой процент использования солнечной энергии в своих национальных энергосистемах. Солнечные электростанции вырабатывают электричество или горячую воду. То есть, работают как батареи и коллекторы. К примеру, власти Калифорнии (США) собираются до 2020 года довести долю выработки электричества с гелиоэлектростанций в энергосистеме штата до 30%.

Электротранспорт на солнечных батареях

Постепенно идёт внедрение солнечных батарей на автомобильном транспорте. Образцы, которые целиком работают от солнечных батарей, пока ещё существуют только в виде концепт-каров. Использование их в массовом масштабе на данный момент невозможно.

В них гелиопанели устанавливаются на поверхность кузова и заряжают аккумуляторы. Те, в свою очередь, обеспечивают питание электромотора. Использование батарей в серийных моделях ограничивается тем, что их используют для питания отдельных узлов автомобиля. Подробнее читайте в статье «Солнечная энергия в автомобилестроении».
Вернуться к содержанию

Прочие направления

Ниже приводятся ещё некоторые примеры того, как человек использует солнечную энергию. Все перечисленные предметы существуют в исполнении, работающем от гелиобатарей:

  • Термометр;
  • Детские игрушки;
  • Фонтан;
  • Power bank на солнечных батареях для зарядки различных гаджетов;
  • Всевозможные светильники;
  • Походные солнечные батареи;
  • Радиоприёмник;
  • Двигатель;
  • Есть даже самолёт на солнечных батареях.

Так, что перспективы использования солнечной энергии есть, и отрасль продолжает развиваться.

Источники:

http://al-vo.ru/o-zhizni/solnechnaya-energiya.html
http://www.syl.ru/article/306035/primeryi-ispolzovaniya-energii-solntsa-na-zemle-solnechnyie-elektrostantsii-solnechnaya-energetika
http://akbinfo.ru/alternativa/ispolzovanie-solnechnoj-jenergii.html

Ссылка на основную публикацию
Adblock
detector