Накопитель энергии. Накопители электрической энергии большой энергоемкости

Содержание

Какие бывают накопители энергии

Природа подарила человеку разнообразные источники энергии: солнце, ветер, реки и другие. Недостатком этих генераторов бесплатной энергии является отсутствие стабильности. Поэтому в периоды избытка энергии ее запасают в накопителях и расходуют в периоды временного спада. Накопители энергии характеризуют следующие параметры:

  • объем запасаемой энергии;
  • скорость ее накопления и отдачи;
  • удельная плотность;
  • сроки хранения энергии;
  • надежность;
  • стоимость изготовления и обслуживания и другие.

Методов систематизации накопителей множество. Одним из самых удобных является классификация по типу энергии, используемой в накопителе, и по способу ее накопления и отдачи. Накопители энергии подразделяются на следующие основные виды:

  • механические;
  • тепловые;
  • электрические;
  • химические.

Накопление потенциальной энергии

Суть этих устройств незамысловата. При подъеме груза происходит накопление потенциальной энергии, при опускании она совершает полезную работу. Особенности конструкции зависят от вида груза. Это может быть твердое тело, жидкость или сыпучее вещество. Как правило, конструкции устройств этого типа предельно просты, отсюда высокая надежность и длительный срок службы. Время хранения запасенной энергии зависит от долговечности материалов и может достигать тысячелетий. К сожалению, такие устройства обладают низкой удельной энергоемкостью.

Механические накопители кинетической энергии

В этих устройствах энергия хранится в движении какого-либо тела. Обычно это колебательное или поступательное движение.

Кинетическая энергия в колебательных системах сосредоточена в возвратно-поступательном движении тела. Энергия подается и расходуется порциями, в такт с движением тела. Механизм достаточно сложный и капризный в настройке. Широко используется в механических часах. Количество запасаемой энергии обычно невелико и годится только для работы самого устройства.

Накопители, использующие энергию гироскопа

Запас кинетической энергии сосредоточен во вращающемся маховике. Удельная энергия маховика значительно превосходит энергию аналогичного статического груза. Имеется возможность в короткий промежуток времени производить прием или отдачу значительной мощности. Время хранения энергии невелико, и для большинства конструкций ограничено несколькими часами. Современные технологии позволяют довести время хранения энергии до нескольких месяцев. Маховики очень чувствительны к сотрясениям. Энергия устройства находится в прямой зависимости от скорости его вращения. Поэтому в процессе накопления и отдачи энергии происходит изменение скорости вращения маховика. А для нагрузки, как правило, требуется постоянная, невысокая скорость вращения.

Более перспективными устройствами являются супермаховики. Их изготавливают из стальной ленты, синтетического волокна или проволоки. Конструкция может быть плотной или иметь пустое пространство. При наличии свободного места витки ленты перемещаются к периферии вращения, момент инерции маховика изменяется, часть энергии запасается в подвергшейся деформации пружине. В таких устройствах скорость вращения более стабильна, чем в цельнотелых конструкциях, а их энергоемкость гораздо выше. Кроме того, они более безопасны.

Современные супермаховики изготовляют из кевларового волокна. Они вращаются в вакуумной камере на магнитном подвесе. Способны сохранять энергию несколько месяцев.

Механические накопители, использующие силы упругости

Этот тип устройств способен запасать огромную удельную энергию. Из механических накопителей он обладает наибольшей энергоемкостью для устройств с габаритами в несколько сантиметров. Большие маховики с очень высокой скоростью вращения имеют гораздо большую энергоемкость, но они очень уязвимы от внешних факторов и имеют меньшее время хранения энергии.

Механические накопители, использующие энергию пружины

Способны обеспечить самую большую механическую мощность из всех классов накопителей энергии. Она ограничена лишь пределом прочности пружины. Энергия в сжатой пружине может храниться несколько десятилетий. Однако из-за постоянной деформации в металле накапливается усталость, и емкость пружины снижается. В то же время высококачественные стальные пружины при соблюдении условий эксплуатации могут работать сотни лет без ощутимой потери емкости.

Функции пружины могут выполнять любые упругие элементы. Резиновые жгуты, например, в десятки раз превосходят стальные изделия по запасаемой энергии на единицу массы. Но срок службы резины из-за химического старения составляет всего несколько лет.

Механические накопители, использующие энергию сжатых газов

В этом типе устройств накопление энергии происходит за счет сжатия газа. При наличии избытка энергии газ при помощи компрессора закачивается под давлением в баллон. По мере необходимости сжатый газ используется для вращения турбины или электрогенератора. При небольших мощностях вместо турбины целесообразно использовать поршневой мотор. Газ в емкости под давлением в сотни атмосфер обладает высокой удельной плотностью энергии в течение нескольких лет, а при наличии качественной арматуры — и десятки лет.

Накопление тепловой энергии

Большая часть территории нашей страны расположена в северных районах, поэтому значительная часть энергии вынужденно расходуется для обогрева. В связи с этим приходится регулярно решать проблему сохранения тепла в накопителе и извлечении его оттуда при необходимости.

В большинстве случаев не удается достичь высокой плотности запасаемой тепловой энергии и сколько-нибудь значительных сроков ее сохранения. Существующие эффективные устройства в силу ряда своих особенностей и высокой цены не подходят для широкого применения.

Накопление за счет теплоемкости

Это один из самых древних способов. В его основе лежит принцип накопления тепловой энергии при нагревании вещества и отдачи тепла при его охлаждении. Конструкция таких накопителей чрезвычайно проста. Им может быть кусок любого твердого вещества либо закрытая емкость с жидким теплоносителем. Накопители тепловой энергии имеют очень большой срок службы, практически неограниченное количество циклов накопления и отдачи энергии. Но время хранения не превышает нескольких суток.

Аккумулирование электрической энергии

Электрическая энергия — это самая удобная ее форма в современном мире. Именно поэтому электрические накопители получили широкое распространение и наибольшее развитие. К сожалению, удельная емкость дешевых аппаратов невелика, а приборы с большой удельной емкостью слишком дороги и недолговечны. Накопители электрической энергии — это конденсаторы, ионисторы, аккумуляторы.

Конденсаторы

Это самый массовый вид накопителей энергии. Конденсаторы способны работать при температуре от -50 до +150 градусов. Количество циклов накопления-отдачи энергии – десятки миллиардов в секунду. Соединяя несколько конденсаторов параллельно, можно легко получить емкость необходимой величины. Кроме того, существуют переменные конденсаторы. Изменение емкости таких конденсаторов может производиться механическим или электрическим способом либо воздействием температуры. Чаще всего переменные конденсаторы можно встретить в колебательных контурах.

Конденсаторы делятся на два класса – полярные и неполярные. Срок службы полярных (электролитических) меньше, чем неполярных, они больше зависят от внешних условий, но в то же время обладают большей удельной емкостью.

Как накопители энергии конденсаторы — не очень удачные приборы. Они имеют малую емкость и незначительную удельную плотность запасаемой энергии, а время ее хранения исчисляется секундами, минутами, редко часами. Конденсаторы нашли применение в основном в электронике и силовой электротехнике.

Расчет конденсатора, как правило, не вызывает затруднений. Вся необходимая информация по разным типам конденсаторов представлена в технических справочниках.

Эти приборы занимают промежуточное место между полярными конденсаторами и аккумуляторами. Иногда их называют «суперконденсаторами». Соответственно, они имеют огромное количество этапов заряда-разряда, емкость больше, чем у конденсаторов, но немного меньше, чем у небольших аккумуляторов. Время хранения энергии – до нескольких недель. Ионисторы очень чувствительны к температуре.

Читать еще:  Что нужно сделать для вечеринки. Чтобы праздник не был испорчен. Устрой игры с настоящими призами

Силовые аккумуляторы

Электрохимические аккумуляторы используются, если требуется запасать достаточно много энергии. Лучше всего для этой цели подходят свинцово-кислотные приборы. Их изобрели около 150 лет назад. И с тех пор в устройство аккумулятора не внесли ничего принципиально нового. Появилось много специализированных моделей, значительно возросло качество комплектующих изделий, повысилась надежность аккумуляторной батареи. Примечательно, что устройство аккумулятора, созданного разными производителями, для разных целей отличается лишь в незначительных деталях.

Электрохимические аккумуляторы подразделяются на тяговые и стартовые. Тяговые используются в электротранспорте, источниках бесперебойного питания, электроинструментах. Для таких аккумуляторов характерны длительный равномерный разряд и большая его глубина. Стартовые аккумуляторы могут выдать большой ток в короткий промежуток времени, но глубокий разряд для них недопустим.

Электрохимические аккумуляторы имеют ограниченное количество циклов заряда-разряда, в среднем от 250 до 2000. Даже при отсутствии эксплуатации через несколько лет они выходят из строя. Электрохимические аккумуляторы чувствительны к температуре, требуют длительного времени заряда и строгого соблюдения правил эксплуатации.

Прибор необходимо периодически подзаряжать. Заряд аккумулятора, установленного на транспортное средство, производится в движении от генератора. В зимнее время этого недостаточно, холодная батарея плохо принимает заряд, а потребление электроэнергии на запуск двигателя возрастает. Поэтому необходимо дополнительно проводить заряд аккумулятора в теплом помещении специальным зарядным устройством. Одним из существенных недостатков свинцово-кислотных приборов является их большой вес.

Аккумуляторы для маломощных устройств

Если требуются мобильные устройства с малым весом, то выбирают следующие типы аккумуляторов: никель-кадмиевые, литий-ионные, металл-гибридные, полимер-ионные. У них выше удельная емкость, но и цена много больше. Их применяют в мобильных телефонах, ноутбуках, фотоаппаратах, видеокамерах и других малогабаритных устройствах. Разные типы аккумуляторов отличаются своими параметрами: количеством циклов зарядки, сроком хранения, емкостью, размером и т. п.

Литий-ионные аккумуляторы большой мощности применяют в электромобилях и гибридных машинах. Они имеют небольшой вес, большую удельную емкость и высокую надежность. В то же время литий-ионные аккумуляторы очень пожароопасны. Возгорание может произойти от короткого замыкания, механической деформации или разрушения корпуса, нарушений режимов заряда или разряда аккумулятора. Потушить пожар довольно трудно из-за высокой активности лития.

Аккумуляторы являются основой многих приборов. Например, накопитель энергии для телефона – это компактный внешний аккумулятор, помещенный в прочный, влагозащищенный корпус. Он позволяет зарядить или запитать сотовый телефон. Мощные мобильные накопители энергии способны заряжать любые цифровые аппараты, даже ноутбуки. В таких устройствах устанавливают, как правило, литий-ионные аккумуляторы большой емкости. Накопители энергии для дома также не обходятся без аккумуляторных батарей. Но это гораздо более сложные устройства. Кроме аккумулятора в их состав входят зарядное устройство, система управления, инвертор. Аппараты могут работать как от стационарной сети, так и от других источников. Выходная мощность в среднем составляет 5 кВт.

Накопители химической энергии

Различают «топливные» и «безтопливные» типы накопителей. Для них требуются специальные технологии и нередко громоздкое высокотехнологичное оборудование. Используемые процессы позволяют получать энергию в разных видах. Термохимические реакции могут проходить как при низкой, так и при высокой температуре. Компоненты для высокотемпературных реакций вводят только тогда, когда необходимо получить энергию. До этого их хранят отдельно, в разных местах. Компоненты для низкотемпературных реакций обычно находятся в одной емкости.

Накопление энергии наработкой топлива

Этот способ включает два совершенно независимых этапа: накопление энергии («зарядка») и ее использование («разрядка»). Традиционное топливо, как правило, обладает большой удельной емкостью энергии, возможностью продолжительного хранения, удобством использования. Но жизнь не стоит на месте. Внедрение новых технологий предъявляет повышенные требования к топливу. Задача решается путем улучшения существующих и создания новых, высокоэнергетических видов топлива.

Широкому внедрению новых образцов препятствует недостаточная отработанность технологических процессов, большая пожаро- и взрывоопасность в работе, необходимость высококвалифицированного персонала, высокая стоимость технологии.

Безтопливное химическое накопление энергии

В этом виде накопителей энергия запасается за счет преобразования одних химических веществ в другие. Например, гашеная известь при нагреве переходит в негашеное состояние. При «разрядке» запасенная энергия выделяется в виде тепла и газа. Именно так происходит при гашении извести водой. Для того чтобы реакция началась, обычно достаточно соединить компоненты. В сущности, это вид термохимической реакции, только протекает она при температуре в сотни и тысячи градусов. Поэтому используемое оборудование гораздо сложнее и дороже.

Емкостные накопители энергии 4.2.1. Общие сведения

Емкостные накопители электрической энергии являются перспективным видом источника бортового питания электромобиля. До недавнего времени использование емкостных накопителей считалось малоперспективным и трудоемким из-за характеристики разряда. Появление емкостных накопителей с большой удельной энергоемкостью позволяет рассматривать их как перспективный накопитель энергии.

Преимуществами емкостных накопителей по сравнению с аккумуляторными батареями являются:

  • • экологическая чистота;
  • • способность быстро разряжаться и заряжаться;
  • • не требуют ухода;
  • • длительный срок;
  • • большая удельная мощность.

Взаимосвязь основных параметров конденсатора описывается формулами:

С- К А ? 0; р = К Е 2 ,

где С — электрическая емкость конденсатора;

К — относительная диэлектрическая постоянная;

А — площадь пластины;

  • ? — диэлектрическая проницаемость вакуума; б — толщина диэлектрического слоя;
  • ? — энергия; и — напряжение;

Е — напряженность электрического поля; р — плотность энергии.

Исходя из вышеуказанных зависимостей роста удельной энергоемкости можно достичь увеличением емкости С или достижением предельной напряженности электрического поля Е, одновременно

оптимизируя величины — и К.

Для решения этой задачи используют два подхода:

  • • создание диэлектрических молекулярных пленок с высшими значениями К и Е, что позволяет увеличить удельную энергию конденсаторов почти в 10 раз;
  • • создание энергоемких конденсаторов путем оптимизации вели-

чины — (применение конденсаторов с двойным диэлектриче-б

Электростатические накопители энергии или емкостные накопители энергии большой емкости конструктивно подразделяются на два типа по используемому электролиту: щелочному и органическому. Российскими производителями ЕНЭ на щелочном электролите являются МНПО «ЭКОНД» (г. Москва) и АОЗТ «ЭЛИТ» (г. Курск). ЕНЭ на органическом электролите представлены различными фирмами, лучшими из них являются изделия фирмы Maxwell и Epcos. Разработанные и изготовленные к настоящему времени ЕНЭ имеют удельные показатели: массовой энергоемкости 5—10 Втч/кг, объемной энергоемкости 1 — 1,5 Вт ч/л, мощности 4—5 кВт/кг. Видно, что ЕНЭ не могут конкурировать с ТАБ по энергоемкости, однако их основными преимуществами по сравнению с ТАБ являются экологическая чистота, большая удельная мощность, высокая динамичность (способность быстрого заряжения), безуходность и большой срок службы.

Суперконденсатор призван побороться с традиционными аккумуляторными батареями за право поставлять энергию современным мобильным устройствам. Если раньше конденсаторы использовались только для кратковременного хранения небольшого электрического заряда, то в настоящее время так называемые «суперконденсаторы» могут хранить в сотни раз больше энергии, чем традиционные емкостные элементы, причем делать это на протяжении долгого времени без утечки заряда. Еще одним важным преимуществом суперконденсаторов по сравнению с батареями является способность быстрого разряда, в ходе которого развивается практически любая мощность, необходимая потребителю.

Приставку «супер» они получили благодаря своей емкости, которая примерно на три порядка больше, чем у обычных конденсаторов тех же габаритов. Вместе с тем суперконденсаторы остаются традиционными двухвыводными компонентами. Выпускаются они самых разнообразных форм — от малогабаритных монтируемых на поверхность приборов размером с монетку до крупногабаритных призматических или цилиндрических компонентов с винтовым креплением. Основное назначение — источники высокой импульсной энергии и дублирование основного источника питания (батареи).

В сущности, суперконденсатор не отличается от обычного электрического конденсатора, и значение его емкости рассчитывается по известной со школы формуле. Большая емкость достигнута за счет максимизации эффективной площади обкладок и уменьшения эффективного расстояния между ними до нескольких нанометров. В большинстве представленных на рынке суперконденсаторов электроды выполнены из углерода (гранулированного или порошкового).

Между ними расположен разделитель, пропитанный электролитом (водным или органическим раствором) с высокой концентрацией подвижных ионов. При контакте электрода с электролитом с двух сторон их межфазовой границы формируются слои с избыточными носителями противоположной полярности. Межфазовая граница раздела двух материалов толщиной всего несколько нанометров служит диэлектриком конденсатора. Таким образом, собственно конденсаторный элемент образуют два слоя с избыточной концентрацией носителей и граница их раздела.

Читать еще:  Важный анализ крови - гемостазиограмма. Коагулограмма: суть и показания к исследованию, параметры, как и где сдавать

Отсюда второе название суперконденсаторов — электрохимические двухслойные конденсаторы. С другой стороны разделителя формируется точно такая же структура, но с противоположной первой полярностью носителей в образующих ее слоях. Таким образом, практически один компонент объединяет два включенных последовательно конденсатора с различными значениями последовательного сопротивления.

Основные достоинства суперконденсаторов — большое значение емкости при малых габаритах, отсутствие необходимости применять специальные схемы зарядки или схемы управления процессом разрядки, дружественность окружающей среде (отсутствие вносимых загрязнений), возможность пайки выводов и благодаря этому высокая стабильность контактов (в отличие от батарей).

Для зарядки суперконденсаторов можно использовать источники постоянного тока, постоянного напряжения, включенную параллельно с конденсатором батарею, топливный элемент, преобразователь постоянного тока и т. п. В случае применения батареи для снижения зарядового тока конденсатора и продления срока жизни батареи целесообразно последовательно с конденсатором включать резистор с низким сопротивлением (при этом следует обратить внимание на то, чтобы клеммы конденсатора были присоединены к нагрузке непосредственно, а не через резистор). Максимально рекомендуемый зарядный ток I = У/5Я, где У — зарядное напряжение, а Я — полное сопротивление суперконденсатора. Разогрев конденсатора из-за перегрузки по зарядному току или напряжению может привести к выделению паров электролита, сокращению жизненного цикла или даже к разрушению прибора.

Рабочее напряжение большинства суперконденсаторов равно 2,3—2,5 В. Они хорошо выдерживают кратковременные перегрузки по напряжению, но превышение рекомендуемого значения рабочего напряжения в течение длительного периода может привести к разложению электролита, а это вызывает увеличение тока утечки или разрушение корпуса. Сейчас, правда, уже выпускаются суперконденсаторы на напряжение 3 или 4 В. Но при таких значениях напряжения их параметры быстро деградируют.

Вот почему основная область применения суперконденсаторов на «высокое» напряжение — электронные игрушки, для которых короткий жизненный цикл используемых компонентов не имеет большого значения. Если же необходимо длительно работать при повышенном напряжении, то, как и в случае традиционных компонентов, приходится включать конденсаторы последовательно или параллельно/последовательно, и при этом также, как обычно, значение эффективной емкости уменьшается.

При последовательном соединении конденсаторов возникает проблема неравномерного падения напряжения отдельных компонентов и вероятность превышения допустимого значения напряжения из-за рассогласования их параметров.

Избежать этого можно путем пассивного или активного симметрирования напряжений конденсаторного блока. При пассивном методе параллельно каждому конденсатору включается резисторный делитель напряжения.

Причем значение сопротивления резисторов следует выбирать так, чтобы ток зарядки/разрядки был больше приведенного в технических условиях тока утечки и вместе с тем не вызывал сокращения срока службы батареи. При низких значениях тока утечки рекомендуется использовать резисторы с сопротивлением 470 кОм — 1,2 МОм.

При таком симметрировании напряжения матричного модуля любой конденсатор матрицы, напряжение которого превышает установленный уровень, разряжается.

Как правило, диапазон рабочих температур суперконденсаторов составляет -20—70 °С.

Превышение указанного в ТУ максимального значения температуры на 10 °С может привести к сокращению срока службы прибора в два раза, в основном из-за увеличения Е811.

Поэтому рекомендуется работать при минимально возможной температуре. Если же это не удается, целесообразно уменьшать рабочее напряжение. Например, при температуре 85 °С снижение рабочего напряжения до 1,8 В позволит компенсировать негативные эффекты, вызываемые перегревом прибора. В случае работы при низких температурах можно слегка повышать напряжение по сравнению с его значением в ТУ.

При длительной работе (и хранении) пропитка суперконденсаторов «высыхает» (как у электролитических конденсаторов). Но при правильном использовании они могут выдержать более 500 тыс. циклов зарядки/разрядки без изменения емкости, а их минимальный срок службы достигать 10 лет.

Следует также помнить, что влияние окружающей среды и условий работы на основные параметры суперконденсаторов отличается от их воздействия на характеристики обычных конденсаторов.

Сегодня активно ведутся работы по созданию суперконденсаторов, в которых средой накопления заряда служат проводящие полимеры. Молекулы таких органических веществ, подобно молекулам полупроводниковых материалов, имеют центры захвата ионов, а их механизм проводимости аналогичен электронно-дырочной проводимости полупроводников.

Благодаря тому, что ионы накапливаются в объеме полимера, а не на поверхности проводящего электролита, емкость таких конденсаторов значительно выше, чем «обычных» суперконденсаторов. Изучается возможность сочетания полимеров с материалами, формирующими суперконденсатор, например, полипропилена с углеродными нанотрубками.

Правда, пока самый большой заряд был накоплен в «чисто» полимерной системе.

Современные энергоемкие электрические и электронные системы выдвигают жесткие требования к источникам питания. Разнообразное оборудование — от цифровых камер и портативных электронных устройств до электрических трансмиссий «гибридных» автобусов, грузовиков и легковых автомобилей — нуждается как в аккумулировании, так и в подаче необходимой энергии.

Современный разработчик может решить эту задачу двумя способами: использовать аккумулятор (или источник питания), способный обеспечить большой импульс тока, или присоединить параллельно менее мощной батарее суперконденсатор («гибридное» решение). Во втором случае назначение суперконденсатора — «страховка» основного источника питания (как правило, батареи) на случай падения его напряжения.

При падении напряжения батареи или необходимости подачи большого импульса тока на нагрузку функции источника питания выполняет суперконденсатор. Это обусловлено тем, что общий уровень (плотность) энергии батарей высокий, а плотность их мощности мала, тогда как у суперконденсаторов, наоборот, плотность энергии мала, а плотность мощности велика. В простейшем случае суперконденсатор дублирует батарею, обеспечивая ток зарядки на нагрузку.

В последнее время большое внимание уделяется применению суперконденсаторов в системах гибридных автомобилей, в которых для управления генератором используется двигатель внутреннего сгорания, а приводится автомобиль в движение с помощью электрического двигателя (или двигателей).

В этом случае двигатель внутреннего сгорания работает с почти постоянной скоростью и выходной мощностью, т. е. с наибольшей эффективностью, а суперконденсатор служит источником тока в начале движения или при ускорении «подзаряжается» при торможении.

Несомненно, суперконденсаторы не могут заменить аккумулятор транспортного средства, но их применение значительно расширяет возможности системы питания, улучшая стартовые свойства при низких температурах (благодаря большему пусковому крутящему моменту), стабилизируя напряжение системы питания и сохраняя энергию, выделяемую при торможении. В общем случае в системе питания транспортных средств целесообразно применять суперконденсаторы, время зарядки/разрядки которых составляет 5—60 с.

4.2.2. Справочные данные

Состояние, перспективные показатели и характеристики различных типов ЕНЭ прелставлены в табл. 4.2—4.6.

Таблица 4.2. Состояние и перспективные показатели ЕНЭ

Накопитель энергии

Накопитель энергии – устройство, с которым большинство из людей постоянно сталкивается в быту. Всем знаком аккумулятор мобильного телефона, автомобиля, пальчиковые батарейки, которые не предусматривают повторной зарядки. Однако понятие энергетического накопления гораздо шире представлений среднестатистического индивидуума. Есть множество теорий, футуристических проектов и изысканий. Но интересно посмотреть, что реально может накапливать энергию и уже используется в самых разных областях деятельности человека.

Потенциальная энергия

Самый неочевидный накопитель собирает показатель потенциала, поднятого на высоту тела. Это устройство знакомо многим. Часы-ходики с массивными грузиками используют именно физический потенциал. Пока одна из гирь опускается, механизм работает. Для накопления запаса энергии требуется завести часы – переместить грузы определенным способом. Другие аккумуляторы потенциала работают не таким очевидным способом.

Гидроэлектростанции

Гидроэлектростанция – самый большой энергетический накопитель потенциального типа. Работает это следующим образом:

  • главная часть гидроэлектрической станции – огромная плотина. Она замыкает большую территорию, создавая водохранилище, которое наполняется рекой или другим источником воды;
  • в основании железобетонной стены станции находится основное инженерное решение для производства электричества. Падающая с большой высоты вода преобразует свою потенциальную энергию в кинетическую;
  • при воздействии потока воды на лопатки турбины кинетика преобразуется в электричество.
Читать еще:  Как правильно себя вести с незнакомыми людьми. Беседа «Опасность контактов с незнакомыми людьми» (подготовительная группа)

Гидроэлектростанции классического типа, а точнее, их водохранилища – накопители энергии потенциального типа. Этот источник относится к возобновляемому. Поток воды постоянно пополняет искусственное озеро, при этом предусмотрены методики отвода жидкости в период, когда объем водохранилища на максимуме, а потребности в производстве электричества нет.

Энергетические накопители потенциального типа несколько другого принципа действия используются в аккумулирующих резервуарах гидроэлектростанций. Такой тип инженерных решений относится к вспомогательному и применяется в совокупности с другим источником. Часто – в солнечных электростанциях, построенных в местностях с мягким климатом. Работает все следующим образом:

  • в период максимальной солнечной активности электроэнергия, которую производит солнечная станция, не нужна, потребности городов и энергосети, в общем, малы;
  • электричество направляется на работу насосов, которые закачивают воду в огромный искусственный резервуар;
  • в темное время суток, если нужно направить дополнительный поток электрической мощности в общую систему, включается механика гидроэлектростанции. Потенциал накопленной воды используется для работы турбин.

Станции, которые используют накопители энергии воды, становятся все более популярными. К достоинствам такого решения относится способность не только полностью использовать мощности основного производителя, но и гарантировать круглосуточный режим отдачи электричества в общую сеть.

Существуют и решения, оперирующие твердым грузом. К ним относятся системы, построенные на простой идее:

  • во время работы солнечных батарей или ветрогенераторов излишек их мощности направляется на двигатели, которые перемещают вагоны по рельсовому пути вверх, по наклонной поверхности;
  • в то время, когда солнца или ветра нет, тележки двигаются вниз, на их осях расположены генераторы, производящие электричество.

Достоинств у механического решения предостаточно. Здесь малые требования к мощности двигателей, используемых для подъема груза. Для перекачки воды нужно несравненно большие величины как токов, так и давления.

Накопители потенциальной энергии имеют одно неоспоримое достоинство: запасенное можно хранить практически без потерь крайне долго. Потери воды в огромном резервуаре из-за испарения почти незаметны, а если идет речь о поднятии груза, его легко зафиксировать механически в верхней точке.

Недостаток сбора потенциальной энергии также очевиден. Чтобы получить промышленные объемы использования или долговременную работу устройства в быту, нужно или оперировать огромными массами, так сказать, энергоносителя, или гарантировать низкое потребление преобразованной энергии.

Накопители тепловой энергии

Тепловые накопители – распространенные устройства. Самый знакомый рядовому потребителю – электрический нагревательный котел. Он накапливает тепло, которое затем используется для бытовых нужд, отопления.

Менее понятный класс – тепловые накопители энергии, выполняющие роль стабилизаторов. К ним относятся:

  • водонагреватели, построенные на вторичной схеме передачи тепла;
  • расширительные емкости солнечных коллекторов, которые не допускают перегрева теплоносителя и стабилизируют режим работы батареи;
  • теплоаккумулятор может строиться на принципе фазового перехода. Расплав нагревается до высокой температуры, при этом теплоноситель переходит из твердого состояния в жидкое.

Проблем у накопителей тепловой энергии достаточно много. К примеру:

  • энергию нужно использовать быстро. С течением времени содержимое накопителя просто теряет энергию, отдавая ее в окружающую среду;
  • построенные на фазовом переходе накопители сложны в эксплуатации. Здесь наблюдается изменение объема: если жидкость переводят в пар, приходится бороться с огромным давлением.

Современные системы тепловой защиты позволяют долго сохранять характеристики накопителя тепловой энергии. Но здесь играет роль баланса стоимости защиты и целевого использования энергии. Поэтому накопители тепла идеальны в роли компенсаторов. В это же время их эффективность в качестве мощного источника энергии со стабильными показателями отдачи весьма спорна.

Аккумуляторы энергии сжатого газа

Пневматический инструмент, газопоршневые генераторы, небольшие кары – вот краткий список устройств, которые используют энергию сжатого газа. Устройство накопителя энергии знакомо практически всем. Это надежная, прочная колба из стали, в которую под огромным давлением закачивается газ.

Уровень выхода энергии накопителя сжатого газа нестабилен. Он велик, пока давление внутри баллона близко к максимуму. И снижается по мере расходования газа. Для стабилизации выхода используются редукторы. Они обеспечивают постоянное давление на выходе, что не только создает оптимальные условия работы потребителя, но и продлевает срок эффективного расходования запаса газа.

Накопители энергии сжатого газа применяются и в роли компенсаторов. Стабилизация работы компрессора производится при помощи расширительной емкости. В нее закачивается газ основным двигателем, поддерживается конкретное давление. При использовании энергии пневмоинструментом, компрессор может включаться периодически, поддерживая стабильное состояние системы. Основная мощность поступает именно из накопителя, расширительного баллона, совмещенного с редуктором.

Главное достоинство аккумулятора сжатого газа – простота манипулирования. Соблюдается некий термический баланс, когда в режиме компенсатора выделенное тепло при сжатии газа соответствует количеству энергии при расширении рабочего тела. К другому плюсу относится надежность инженерного решения. Прочность баллона такова, что он может заправляться неоднократно, служить на протяжении десятков лет. Третий плюс – при наличии надежной перекрывающей арматуры или запайки емкости, газ может сохранять свои параметры и энергетику очень долго.

Накопители электрической энергии

Аккумуляцию электроэнергии можно проводить разными способами. Сегодня к самым распространенным и широко используемым средствам относятся конденсатор, ионистор, химические преобразователи, накопители заряда активных частиц.

Конденсатор

Данный класс аккумулятора электрической энергии – знакомое всем устройство, конструкцию, так называемой, лейденской банки проходят еще в школьном курсе физики. Заряд накапливается на двух пластинах. Современные конденсаторы имеют прокладку, изготовленную из полимера с высокими показателями пробоя. Это позволяет:

  • накапливать большое количество энергии;
  • работать большими значениями напряжения;
  • гарантировать безопасность использования;
  • обеспечить малые размеры накопителя.

Соединенные параллельно элементы позволяют построить батарею с нужным показателем емкости. Данный тип накопителя не может сохранять энергию долго без потерь. К тому же, собирается ее довольно мало. Но при малом потреблении конденсатор может быть достаточно эффективен. Сегодня именно такие накопители используют в аварийных светодиодных лампах.

Во время питания конденсатор заряжается, при отсутствии энергоснабжения светильник работает в течение получаса, чтобы люди могли принять меры к устранению причин перебоя, лечь спать или перевести оборудование в режим консервации.

Ионисторы, или, как их еще называют, суперконденсаторы, используют несколько другую схему накопления энергии. Здесь заряд распределяется в объеме рабочего тела в виде заряженных частиц. В результате достигаются огромный (по сравнению с конденсаторами) срок хранения энергии и емкость, но наблюдается крайняя чувствительность к температуре. Чем ниже температура рабочей среды, тем меньше отдача тока от накопителя энергии.

Аккумуляторы химического преобразования

Электрохимическая ячейка – основа большинства автомобильных, мотоциклетных и других привычных типов аккумуляторов. Схема работы накопителя проста:

  • в результате взаимодействия пластины металла и кислоты образуются заряженные ионы;
  • в ходе работы соли осаждаются на пластине из катализатора;
  • по мере понижения насыщенности электролита аккумулятор истощается – уровень выдачи энергии снижается.

При зарядке происходит обратный процесс. Электролиз восстанавливает показатели электролита, переносит металл на пластину-донор. Достоинств у электрохимического аккумулятора множество. Можно получить стабильный и высокий выходной ток, что ценно для пуска мощного оборудования. Легко создать устройство с высокой емкостью, полезное для долгой работы различного оборудования.

К недостаткам электрохимической ячейки классического типа относится конечное число циклов заряда-разряда. Некоторое количество солей металла становятся инертными, пластины приходят в негодность, истощается электролит. Данные недостатки в большой степени нейтрализованы в гелевых батареях. Этот современный источник энергии содержит коллоидный электролит. В нем лучше проходят процессы образования ионов. Но есть и недостаток – повышается чувствительность к температуре. При ее понижении гель твердеет, показатель отдачи тока падает.

В качестве заключения

Накопители разного типа энергии можно рассматривать очень долго. Это механические – различные пружины. Кинетические – маховики большой массы, используемые, например, в троллейбусах. Аккумуляторы с разным типом носителя ионов – литиевые, никель-марганцевые, кадмиевые. Но использование любого типа накопителя, прежде всего, обуславливается балансом между его характеристиками и показателями потребления энергии.

Источники:

http://fb.ru/article/190701/kakie-byivayut-nakopiteli-energii
http://studref.com/317530/tehnika/emkostnye_nakopiteli_energii_obschie_svedeniya
http://ekoenergia.ru/akkumulyatory/nakopitel-energii.html

Ссылка на основную публикацию
Adblock
detector