Основные формально-логические законы. Законы логики аристотеля

Объясняем 4 главных закона логики на простых примерах

Это знание необходимо, чтобы не допускать ошибок в рассуждениях и замечать, когда их совершают другие.

Студент-химик, выпускница мастерской прикладной рациональности «Летней школы» и автор «Общества скептиков».

Мы часто слышим фразы вроде «это нелогично» и «где тут логика». Интуитивно понятно, что логика — это что-то про наши рассуждения, выводы, структуру мыслей. В целом так и есть. Логика — это наука, которая появилась в V веке до нашей эры и изучает законы и форму мышления.

Под формой мышления понимают структуру мысли, а не её содержание. Например, с точки зрения логики выражение «Все шмумрики хжуют тофц с штецеллой на фафлак. Финкус — шмумрик. Финкус хжует тофц с штецеллой на фафлак» абсолютно верно, а «Все планеты Солнечной системы вращаются вокруг Солнца. Земля вращается вокруг Солнца. Следовательно, Земля — планета Солнечной системы» — нет.

Вся логика «живёт» на четырёх законах. Разберёмся, какие это законы и как они работают.

1. Закон тождества

Каждая мысль должна быть равна самой себе, не должна иметь больше одного значения.

В чём суть

Еще до нашей эры Аристотель говорил: «…Иметь не одно значение — значит не иметь ни одного значения; если же у слов нет (определённых) значений, тогда утрачена всякая возможность рассуждать друг с другом, а в действительности и с самим собой, ибо невозможно ничего мыслить, если не мыслить каждый раз что-нибудь одно».

Примеры нарушения

Самый популярный пример нарушения закона тождества — фраза «студенты прослушали лекцию». Слово «прослушали» можно понять в двух значениях: то ли студенты внимательно слушали преподавателя, то ли всё пропустили.

Примером нарушения закона тождества будет и эта шутка:

— Я сломал руку в двух местах.

— Больше не ходи в эти места.

В результате немного более сложных нарушений закона тождества получаются софизмы. Софизм — это внешне правильное доказательство ложной мысли с помощью преднамеренного нарушения логических законов.

Что лучше: вечное блаженство или бутерброд? Конечно же, вечное блаженство. А что может быть лучше вечного блаженства? Конечно же, ничто! Но бутерброд ведь лучше, чем ничто, поэтому бутерброд лучше вечного блаженства.

Подвох здесь в том, что слово «ничто» употребилось сначала в значении «ни один предмет или явление», а потом в значении «отсутствие чего-либо»

Как применять в жизни

Первый закон логики поможет распознать софизмы. Первое, на что стоит обращать внимание, — неоднозначные слова.

2. Закон противоречия

Высказывание и его отрицание не могут быть одновременно истинными.

В чём суть

Если одно суждение что-то утверждает, а другое то же самое отрицает об одном и том же объекте в одно и то же время и в одном и том же отношении, то они не могут одновременно быть истинными.

Например, два суждения — «котик чёрный» и «котик белый» — не могут одновременно быть истинными, если речь идёт об одном и том же котике, в одно и то же время и в одном и том же отношении. То есть цвет котика сравнивается с одной и той же палитрой.

Примеры нарушения

«Этот рыжий кот оставил по всему ковру чёрные шерстинки». И из детства — «Закрой рот и ешь».

Как применять в жизни

Самое сложное — выявить противоречие. Фраза «в детстве у меня не было детства» не нарушает закон противоречия, а «сделал устный доклад в письменной форме» нарушает. Так что, главное — понять, имеет место противоречие или игра слов.

3. Закон исключённого третьего

Два противоречащих суждения об одном и том же предмете в одно и то же время и в одном и том же отношении не могут быть одновременно истинными и не могут быть одновременно ложными

В чём суть

Суждения бывают противоположными и противоречащими.

Противоположные суждения всегда предполагают некий третий, промежуточный вариант. Например, для суждений «дом большой» и «дом маленький» промежуточным будет «дом среднего размера». Для противоречащих суждений нет никакого третьего варианта. Например, для суждений «дом большой» и «дом небольшой» третьего верного варианта не предполагается.

Итак, два противоречащих суждения об одном и том же предмете, в одно и то же время и в одном и том же отношении не могут быть одновременно истинными и не могут быть одновременно ложными.

Пример нарушения

Суждения «кот старый» и «кот нестарый» об одном и том же котике в одно и то же время не могут быть одновременно верными.

Как применять в жизни

Примеры простые до безобразия, но в жизни закон противоречия нарушается скорее так: между противоречащими суждениями есть ещё часть монолога, да и сами суждения могут быть высказаны не очень явно. Как с этим быть? Внимательно вслушиваться в то, что говорит собеседник, и следить за мыслью. Если все остальные законы не нарушаются, присмотритесь ещё раз к формулировкам. Возможно, тут замаскированные противоречащие суждения.

4. Закон достаточного основания

Любая мысль (тезис) для того, чтобы иметь силу, обязательно должна быть доказана какими-либо аргументами, причём эти аргументы должны быть достаточными для основания исходной мысли, то есть она должна вытекать из них.

В чём суть

Помните, что такое презумпция невиновности? Она основана на законе достаточного основания. Принцип презумпции невиновности предписывает считать человека невиновным, даже если он даёт показания против себя, до тех пор, пока его вина не будет достоверно доказана какими-либо фактами. Другими словами, признание вины не гарантирует, что человек действительно совершил преступление, а вот улики и доказательства — вполне могут. То есть признание вины — недостаточное основание, а факты и улики, указывающие на преступника, — достаточное.

Читать еще:  Защита от побочных эффектов. Она будет нервничать, переживать, если ты её будешь игнорить

Пример нарушения

«Не ставьте мне двойку. Я прочитал весь учебник и, возможно, что-то отвечу». Вывод не вытекает из основания: студент мог прочитать весь учебник, но из этого не следует, что он сможет что-то ответить.

Как применять в жизни

Закон достаточного основания предостерегает от поспешных выводов. Если мы помним о том, что любое утверждение должно быть подкреплено фактами, это поможет распознавать дешёвые сенсации и небылицы.

Основные законы формальной логики

В общем виде можно сказать, что логика – это наука о законах и формах правильного мышления. Без соблюдения этих законов любая интеллектуальная деятельность (в том числе и научная) превращается в бессмыслицу, в абсурд.

Как система знаний логика начала складываться в рамках античной культуры. Ее основоположником считается греческий мыслитель Аристотель. Именно он сформулировал три основных закона логики как наиболее важные и общие требования к рассуждению.

Первый закон логики, известный как закон тождества, может быть обозначен следующим образом: всякая мысль тождественна самой себе, то есть ничто мыслимое не может одновременно являться и собой, и чем-то иным. В формулировке самого Аристотеля это звучит так: «Невозможно мыслить, если не мыслить каждый раз что-нибудь одно».

Современные исследователи интерпретируют данный закон в том отношении, что всякая мысль должна сохранять свою форму и значение в рамках установленного контекста. Это относится как к отдельным понятиям, так и к суждениям. Содержание и смысл каждого высказываемого положения должны фиксироваться и сохраняться на протяжении всего периода «работы» соответствующего дискурса.

Из логического закона тождества следует несколько важных выводов. Во-первых, всегда необходимо помнить, что в любом рассуждении обязательно нужно давать определения ключевых понятий (в особенности это касается научных рассуждений и текстов) и строго придерживаться затем принятых значений используемых терминов.

В-вторых, всегда необходимо уточнять и оговаривать смысл многозначных слов. Нельзя использовать в одном контексте разные значения одного слова. Особую осторожность следует соблюдать при использовании разного рода речевых риторических фигур.

В-третьих, надо учитывать, что, как правило, даже равнозначные слова (синонимы) заменяют друг друга с некоторыми ограничениями (с учетом смысловых оттенков и акцентов).

Границей применимости закона тождества является определенный контекст, определенное дискурсивное пространство.

Второй закон логики – закон противоречия – гласит, что не могут быть одновременно истинными две противоположные мысли об одном и том же предмете, взятом в одно и то же время и в одном и том же отношении. Иначе говоря, нельзя в рамках одного положения утверждать истинность какого-либо тезиса и одновременно утверждать истинность другого тезиса, обратного к первому по смыслу (даже косвенно, скрыто). Необходимо избегать в рассуждениях таких ситуаций, их возникновение является признаком ошибочности рассуждения в целом.

Закон противоречия обладает рядом важных следствий. Во-первых, нужно иметь в виду, что если в каком-либо рассуждении содержатся противоречащие друг другу идеи, то оно считается полностью неверным.

Во-вторых, если в споре, в дискуссии мнения участвующих сторон действительно противоречат друг другу, то правильным может быть только одно из них. Высказывание «Каждый был прав по-своему» для установления истины не имеет значения.

В-третьих, логически корректным возражением в любой ситуации является только выдвижение противоречащего суждения, а не просто любого другого.

Границей применимости закона противоречия служит собственно объект, рассмотренный как функция от конкретного времени и определенного смыслового контекста.

Третий закон логики – закон исключенного третьего – утверждает, что из двух противоречащих друг другу высказываний одно непременно является истинным. Вообще любое суждение должно быть либо истинным, либо ложным. По сути, данный закон выступает дополнением к закону противоречия.

На основании этого закона следует заключить, что, во-первых, возможно доказать то или иное утверждение, рассуждая согласно методу от противного. Для этого необходимо продемонстрировать, что предположение, обратное к рассматриваемому утверждению, приводит к абсурду.

Во-вторых, возможно установить истину, рассуждая согласно методу последовательного исключения. Для этого надо постепенно отбрасывать все версии, и тогда последняя оставшаяся будет истинной (даже если она кажется невероятной).

Закон исключенного третьего имеет границы применимости. Так, он работает, если возможных «претендентов на истинность» только два, либо если выявлены и рассмотрены все возможные «претенденты». Кроме того, данный закон действует только для изолированных высказываний (но не для дискурса в целом) и не действует для высказываний о несуществующих объектах.

Четвертый логический закон был сформулирован в эпоху Нового времени Г. В. Лейбницем. Он известен как закон достаточного основания. В нем выражается общее требование доказательности нашего мышления и утверждается, что всякая мысль для признания ее истинной должна быть обоснована другими мыслями, истинность которых уже установлена. В формулировке самого Лейбница это звучит так: «Все существующее имеет достаточное основание для своего существования». Данный закон выражает концепт рационально-критического мышления в целом.

Границей применимости данного закона является парадокс базиса обоснования, согласно которому в любой системе тезисов ссылкой на предшествующие рассуждения может быть обосновано все, что угодно, кроме базовых аксиом.

Поскольку, как можно видеть, законы логики имеют свои пределы, постольку на границах регулировки мышления этими законами возникают некоторые типичные логические формы, выражающие многоплановость человеческой мысли как таковой.

1) Антиномия (апория) – рассуждение, состоящее из двух противоположных утверждений, каждое из которых подкреплено доказательством. Самые известные из апорий – это апории Зенона и антиномии И. Канта. Антиномии являются свидетельством ограниченности имеющихся данных, а также средств и способов исследования.

2) Парадокс – формально правильное рассуждение, приводящее к противоречащим друг другу выводам. Парадоксы возникают из-за недостаточной ясности исходных оснований рассуждения, поэтому они служат сигналом к выявлению и уточнению данных оснований и в этом качестве играют в науке прогрессивную роль. Иногда они даже специально конструируются на стадии разработки той или иной теории. Наглядным примером значимых для науки парадоксов могут считаться известные парадоксы математической теории множеств.

Читать еще:  Как научиться улыбаться и как произвести хорошее впечатление на людей? Смех помогает выпустить пар. Для чего нужно делать упражнения

3) Софизм – скрытое сознательное нарушение законов логики с целью введения в заблуждение. В отличие от антиномии и парадокса софизм не имеет ценности для науки.

Таким образом, можно заключить, что соблюдение формально-логических законов мышления является важнейшим условием осмысленности интеллектуальной деятельности вообще.

4 закона логики

В поле зрения логики как науки о познавательной деятельности пребывают не только формы мышления, но и отношения, возникающие между ними в мыслительном процессе. Дело в том, что не каждая совокупность понятий, суждений, умозаключений дает возможность построить эффективное размышление. Для него обязательными атрибутами являются последовательность, непротиворечивость, обоснованная связь. Эти аспекты, необходимые для эффективных размышлений, призваны обеспечить логические законы.

В тренинге логического мышления на нашем сайте, мы даем короткую характеристику основным логическим законам. В этой статье рассмотрим 4 закона логики более детально, с примерами, ведь, как справедливо отметил автор учебника по логике Никифоров А. Л.: «Попытка нарушить закон природы способна убить вас, но точно так же попытка нарушить закон логики убивает в вас разум».

Логические законы

Чтобы избежать искаженного представления о предмете статьи, укажем, что, говоря об основных законах логики, мы имеем в виду законы формальной логики (тождества, непротиворечия, исключенного третьего, достаточного основания), а не логики предикатов.

Логический закон – внутренняя существенная, необходимая связь между логическими формами в процессе построения размышления. Под логическим законом Аристотель, который, к слову, первым сформулировал три из четырех законов формальной логики, подразумевал предпосылку к объективной, «природной» правильности рассуждения.

Многие учебные материалы часто предлагают следующие формулы для записи основных законов логики:

  • Закон тождества – А = А, или А ⊃ А;
  • Закон непротиворечия – A ∧ A;
  • Закон исключенного третьего – A ∨ A;
  • Закон достаточного основания – А ⊃ В.

Стоит помнить, что такое обозначение во многом условно и, как отмечают ученые, не всегда в полной мере способны раскрыть суть самих законов.

1. Закон тождества

Аристотель в своей «Метафизике» указывал на тот факт, что размышление невозможно «если не мыслить каждый раз что-нибудь одно». Большинство современных учебных материалов закон тождества формулирует так: «Любое высказывание (мысль, понятие, суждение) на протяжении всего рассуждения должно сохранять один и тот же смысл».

Отсюда следует важное требование: запрещается тождественные мысли принимать за различные, а различные – за тождественные. Поскольку естественный язык позволяет выражать одну и ту же мысль через различные языковые формы, то это может стать причиной подмены исходного смысла понятий и к замене одной мысли другой.

Чтобы подтвердить закон тождества Аристотель обратился к анализу софизмов – ложных высказываний, которые при поверхностном рассмотрении кажутся правильными. Наиболее известные софизмы, наверное, слышал каждый. Например: «Полупустое есть то же, что и наполовину полное. Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное» или «6 и 3 есть четное и нечетное. 6 и 3 есть девять. Следовательно, 9 есть и четное, и нечетное».

Внешне форма рассуждения правильная, но при анализе хода рассуждения обнаруживается ошибка, связанная с нарушением закона тождества. Так, во втором примере всем понятно, что число 9 не может быть одновременно и четным, и нечетным. Ошибка в том, что союз «и» в условии употребляется в разных значениях: в первом как объединение, одновременная характеристика чисел 6 и 3, а во втором – как арифметическое действие сложения. Отсюда и ошибочность вывода, ведь в процессе рассуждения к предмету были применены разные смыслы. По сути, закон тождества – требование в определенности и неизменности мыслей в процессе рассуждения.

Извлекая будничный смысл из вышесказанного остановимся на понимании того, к чему относится закон тождества. В соответствии с ним всегда стоит помнить, что прежде чем приступить к обсуждению любого вопроса, нужно четко определить его содержание и неизменно ему следовать, не смешивая понятий и избегая двусмысленностей.

Закон тождества не предполагает, что вещи, явления и понятия неизменны в некоторых моментах, он основывается на том, что мысль, зафиксированная в определенном языковом выражении, несмотря на все возможные преобразования, должна оставаться тождественной сама себе в пределах конкретного соображения.

2. Закон непротиворечия (противоречия)

Формально-логический закон непротиворечия основывается на доводе, что два несовместимых друг с другом суждения не могут быть одновременно истинными; как минимум одно из них ложно. Оно вытекает из понимания содержания закона тождества: в одно время, в одном отношении истинными не могут быть два суждения о предмете, если одно из них что-нибудь утверждает о нем, а второе это же отрицает.

Сам Аристотель писал: «Невозможно, чтобы одно и то же одновременно было и не было присуще одному и тому же, в одном и том же смысле».

Разберемся с этим законом на конкретном примере – рассмотрим следующие суждения:

  1. Каждый посетитель сайта 4brain имеет высшее образование.
  2. Ни один посетитель сайта 4brain не имеет высшего образования.

Для того, чтобы определить какое высказывание истинно, обратимся к логике. Можем утверждать, что одновременно оба высказывания быть правдивыми не могут, поскольку являются противоречивыми. Из этого следует, что если доказать истинность одного из них, то второе обязательно будет ошибочным. Если же доказать ошибочность одного, то второе может быть как истинным, так и неправдивым. Чтобы узнать правду, исходные данные достаточно проверить, например, с помощью метрики.

По сути, этот закон запрещает утверждать и отрицать одно и то же одновременно. Внешне закон противоречия может показаться очевидным и вызвать справедливое сомнение по поводу целесообразности выделения столь простого вывода в логический закон. Но здесь есть свои нюансы и связаны они с природой самих противоречий. Так, контактные противоречия (когда что-либо утверждается и отрицается почти в одно и то же время, например, уже следующим предложением в речи) более чем очевидны и практически не встречаются. В отличие от первой разновидности, дистантные противоречия (когда между противоречивыми суждениями находится значительный интервал в речи или тексте) – более распространенные и их нужно избегать.

Чтобы эффективно использовать закон противоречия достаточно правильно учитывать условия его употребления. Основным требованием является соблюдение в высказываемой мысли единства времени и отношения между предметами. Другими словами, нарушением закона непротиворечия не может считаться утвердительное и отрицательное суждения, которые относятся к разному времени или употребляются в разных отношениях. Приведем примеры. Так, высказывания «Москва – столица» и «Москва – не столица» могут быть одновременно правильными, если мы говорим в первом случае о современности, а во втором – об эпохе Петра I, который, как известно, перенес столицу в Санкт-Петербург.

Читать еще:  Библейское предание суд соломона читать полностью. Суд соломона библейская притча - большая книга мудрых притч со всего света

В плане разности отношений истинность противоречивых суждений можно передать на таком примере: «Моя подруга хорошо владеет испанским языком» и «Моя подруга плохо владеет испанским языком». Оба утверждения могут быть истинны, если в момент речи в первом случае говорится об успехах в изучении языка по университетской программе, а во втором о возможности работы профессиональным переводчиком.

Таким образом, закон противоречия фиксирует отношения между противоположными суждениями (логическими противоречиями) и никаким образом не касается противоположных сторон одной сущности. Его знание необходимо для дисциплины процесса мышления и исключения возможных неточностей, которые возникают в случае нарушения.

3. Закон исключенного третьего

Намного «знаменитей», чем предыдущие два закона Аристотеля, в широких кругах, благодаря значительной распространенности сентенции «tertium non datur», что в переводе значит «третьего не дано» и отображает суть закона. Закон исключенного третьего – требование к мыслительному процессу, согласно с которым если в одном из двух выражений что-либо о предмете утверждается, а во втором отрицается – одно из них обязательно истинно.

Аристотель в Книге 3 «Метафизики» писал: «…ничего не может быть посредине между двумя противоречивыми суждениями об одном, каждый отдельный предикат необходимо либо утверждать, либо отрицать». Древнегреческий мудрец отмечал, что закон исключенного третьего применим лишь в случае высказываний, употребленных в прошедшем или настоящем времени и не работает с будущим временем, ведь нельзя сказать с достаточной долей уверенности произойдет или не произойдет что-либо.

Очевидно, что закон непротиворечия и закон исключенного третьего тесно связаны. Действительно, те суждения, которые подходят под действие закона исключенного третьего, подходят и под закон непротиворечия, но не все суждения последнего, попадают под действие первого.

Закон исключенного третьего применим к таким формам суждений:

Одно суждение утверждает что-либо о предмете в одном и том же отношении в одно время, а второе – то же самое отрицает. Например: «Страусы – птицы» и «Страусы – не птицы».

  • «Все А есть В», «Некоторые А не есть В».

Одно суждение утверждает что-либо относительно всего класса предметов, второе – отрицает это же, но относительно лишь некоторой части предметов. Например: «Все учащиеся группы ИН-14 сдали сессию на отлично» и «Некоторые учащиеся группы ИН-14 не сдали сессию на отлично».

  • «Ни одно А не есть В», «Некоторые А есть В».

Одно суждение отрицает характеристику класса предметов, а второе эту же характеристику утверждает в отношении некоторой части предметов. Пример: «Ни один житель нашего дома не пользуется Интернетом» и «Некоторые жители нашего дома пользуются Интернетом».

Позже, начиная с эпохи Нового времени, закон был раскритикован. Известная формулировка, применявшаяся для этого: «Насколько верно утверждать, что все лебеди черные, исходя из того, что нам до сих пор встречались только черные?». Дело в том, что закон применим лишь в аристотелевской двузначной логике, которая основывается на абстракции. Поскольку ряд элементов бесконечен, проверить все альтернативы в подобного рода суждениях очень сложно, здесь требуется применение других логических принципов.

4. Закон достаточного основания

Четвертый из основных законов формальной или классической логики был сформулирован по прошествии значительного периода времени после обоснования Аристотелем первых трех. Его автор – видный немецкий ученый (философ, логик, математик, историк; этот список занятий можно продолжить) – Готфрид Вильгельм Лейбниц. В своей работе о простых субстанциях («Монадология», 1714 г.) он писал: «…ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым, – без достаточного основания, почему именно дело обстоит так, а не иначе, хотя эти основания в большинстве случаев вовсе не могут быть нам известны».

Современное определение закона Лейбница основано на понимании, что всякое положение для того, чтобы считаться вполне достоверным, должно быть доказанным; должны быть известны достаточные основания, в силу которых оно считается истинным.

Функциональное предназначение данного закона выражается в требовании соблюдать в мышлении такую черту, как обоснованность. Г. В. Лейбниц, по сути, объединил законы Аристотеля с их условиями определенности, последовательности и непротиворечивости рассуждения, и на основании этого разработал понятие о достаточном основании для того, чтоб характер размышления был логичным. Немецкий логик хотел этим законом показать, что в познавательной или практической деятельности человека рано или поздно наступает момент, когда недостаточно иметь просто истинное утверждение, нужно чтобы оно было обоснованным.

При детальном анализе оказывается, что закон достаточного основания мы применяем в повседневной жизни довольно часто. Делать выводы, основываясь на фактах – значит применять этот закон. Школьник, указывающий в конце реферата список использованной литературы и студент, оформляющий ссылки на источники в курсовой работе – этим они подкрепляют свои выводы и положения, следовательно, используют закон достаточного основания. С тем же самым люди разных профессий сталкиваются в процессе своей работы: доцент – при поиске материала для научной статьи, спичрайтер – при написании речи, прокурор – во время подготовки обвинительного выступления.

Нарушение закона достаточного основания также широко распространено. Иногда причиной тому неграмотность, иногда – специальные уловки с целью получения выгоды (например, построение аргументации с нарушением закона для победы в споре). Как пример, высказывания: «Этот человек не болеет, у него ведь нет кашля» или «Гражданин Иванов не мог совершить преступление, ведь он прекрасный работник, заботливый отец и хороший семьянин». В обоих случаях ясно, что приводимые аргументы в недостаточной мере обосновывают тезис, а, значит, являются прямым нарушением одного из основных законов логики – закона достаточного основания.

Интересуетесь развитием логического мышления и мышления глобально? Обратите внимание на курс «Когнитивистика»».

Отзывы и комментарии

Поделиться своими знаниями в области законов классической логики, порекомендовать литературу для детального ознакомления с ними, а также обсудить данную статью вы можете путем добавления комментария в специальное поле ниже.

Источники:

http://lifehacker.ru/4-glavnyx-zakona-logiki/
http://studopedia.ru/9_172477_osnovnie-zakoni-formalnoy-logiki.html
http://4brain.ru/blog/4-%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD%D0%B0-%D0%BB%D0%BE%D0%B3%D0%B8%D0%BA%D0%B8/

Ссылка на основную публикацию
Adblock
detector