Примеры где не используется кинетическая энергия. Энергия. Кинетическая энергия

Сегодня на уроке:
Энергия. Потенциальная и кинетическая энергия

На заводах и фабриках, станки и машины приводятся в движения с помощью электродвигателей, которые расходуют при этом электрическую энергию (отсюда и название).

Автомобили и самолеты тепловозы и теплоходы, работают, расходуя энергию сгорающего топлива, гидротурбины — энергию падающей с высоты воды. Да и сами мы, чтобы жить, учиться и работать, возобновляем свой запас энергии при помощи пищи, которую мы едим.

Слово «энергия» употребляется нередко и в быту. Так, например, людей, которые могут быстро выполнять большую работу, мы называем энергичными, обладающими большой энергией. Что же такое энергия? Чтобы ответить на этот вопрос, рассмотрим примеры.

Сжатая пружина (рисунок 1,2), распрямляясь, может совершить работу, например, поднять на высоту груз, или заставить двигаться тележку.

Поднятый над землей неподвижный груз не совершает работы, но если этот груз упадет, он может совершить работу (например, может забить в землю сваю).

Способностью совершить работу обладает и всякое движущееся тело. Так, скатившийся с наклонной плоскости стальной шарик А (рисунок 3), ударившись о деревянный брусок В, передвигает его на некоторое расстояние. При этом совершается работа.

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершить работу, говорится, что они обладают энергией.

Энергия — физическая величина, показывающая, какую работу может совершить тело (или несколько тел). Энергия выражается в системе СИ в тех же единицах, что и работу, т. е. в джоулях.

Чем большую работу может совершить тело, тем большей энергией оно обладает.

При совершении работы энергия тел изменяется. Совершенная работа равна изменению энергии.

Потенциальная и кинетическая энергия.

Потенциальной (от лат. потенция — возможность) энергией называется энергия, которая определяется взаимным положением взаимодействующих тел ил частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое относительно поверхности Земли, потому что энергия зависит от взаимного положения его и Земли. и их взаимного притяжения. Если считать потенциальную энергию тела, лежащего на Земле, равной нулю, то потенциальная энергия тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Обозначим потенциальную энергию тела Еп, поскольку Е = А , а работа, как мы знаем, равна произведению силы на путь, то

где F — сила тяжести.

Значит, и потенциальная энергия Еп равна:

Е = Fh, или Е = gmh,

где g — ускорение свободного падения, m — масса тела, h — высота, на которую поднято тело.

Огромной потенциальной энергией обладает вода в реках, удерживаемая плотинами. Падая вниз, вода совершает работу, приводя в движение мощные турбины электростанций.

Потенциальная энергия молота копра (рисунок 4) используется в строительстве для совершения работы по забиванию свай.

Открывая дверь с пружиной, совершается работа по растяжению (или сжатию) пружины. За счет приобретенной энергии пружина, сокращаясь (или распрямляясь), совершает работу, закрывая дверь.

Энергию сжатых и раскрученных пружин используют, например, в ручных часах, разнообразных заводных игрушках и пр.

Потенциальной энергией обладает всякое упругое деформированное тело. Потенциальную энергию сжатого газа используют в работе тепловых двигателей, в отбойных молотках, которые широко применяют в горной промышленности, при строительстве дорог, выемке твердого грунта и т. д.

Читать еще:  Совместное тренинговое занятие для родителей с детьми хорошо, когда все рядом". Совместное игровое занятие родителей и детей "мы вместе" Занятия родителей вместе с детьми

Энергия, которой обладает тело вследствие своего движения, называется кинетической (от греч. кинема — движение) энергией.

Кинетическая энергия тела обозначается буквой Ек .

Движущаяся вода, приводя во вращение турбины гидроэлектростанций, расходует свою кинетическую энергию и совершает работу. Кинетической энергией обладает и движущийся воздух — ветер.

От чего зависит кинетическая энергия? Если скатывать шарик А с разных высот, то можно заметить, что чем с большей высоты скатывается шарик, тем больше его скорость и тем дальше он продвигает брусок, т. е. совершает большую работу. Значит, кинетическая энергия тела зависит от его скорости.

За счет скорости большой кинетической энергией обладает летящая пуля.

Кинетическая энергия тела зависит и от его массы. Еще раз проделаем наш опыт, но будем скатывать с наклонной плоскости другой шарик — большей массы. Брусок В передвинется дальше, т. е. будет совершена бóльшая работа. Значит, и кинетическая энергия второго шарика, больше, чем первого.

Чем больше масса тела, и его скорость, с которой он движется, тем больше его кинетическая энергия.

Для того чтобы определить кинетическую энергию тела, применяется формула:

где m — масса тела, v — скорость движения тела.

Кинетическую энергию тел используют в технике. Удерживаемая плотиной вода обладает, как было уже сказано, большой потенциальной энергией. При падении с плотины вода движется и имеет такую же большую кинетическую энергию. Она приводит в движение турбину, соединенную с генератором электрического тока. За счет кинетической энергии воды вырабатывается электрическая энергия.

Энергия движущейся воды имеет большое значение в народном хозяйстве. Эту энергию используют с помощью мощных гидроэлектростанций.

Энергия падающей воды является экологически чистым источником энергии в отличие от энергии топлива.

Все тела в природе относительно условного нулевого значения обладают либо потенциальной, либо кинетической энергией, а иногда той и другой вместе. Например, летящий самолет обладает относительно Земли и кинетической и потенциальной энергией.

Мы познакомились с двумя видами механической энергии. Иные виды энергии (электрическая, внутренняя и др.) будут рассмотрены в других разделах курса физики.

Кинетическая и потенциальная энергии

Энергия — важнейшее понятие в механике. Что такое энергия. Существует множество определений, и вот одно из них.

Что такое энергия?

Энергия — это способность тела совершать работу.

Кинетическая энергия

Рассмотрим тело, которое двигалось под действием каких-то сил изменило свою скорость с v 1 → до v 2 → . В этом случае силы, действующие на тело, совершили определенную работу A .

Работа всех сил, действующих на тело, равна работе равнодействующей силы.

F р → = F 1 → + F 2 →

A = F 1 · s · cos α 1 + F 2 · s · cos α 2 = F р cos α .

Установим связь между изменением скорости тела и работой, совершенной действующими на тело силами. Для простоты будем считать, что на тело действует одна сила F → , направленная вдоль прямой линии. Под действием этой силы тело движется равноускоренно и прямолинейно. В этом случае векторы F → , v → , a → , s → совпадают по направлению и их можно рассматривать как алгебраические величины.

Работа силы F → равна A = F s . Перемещение тела выражается формулой s = v 2 2 — v 1 2 2 a . Отсюда:

A = F s = F · v 2 2 — v 1 2 2 a = m a · v 2 2 — v 1 2 2 a

A = m v 2 2 — m v 2 2 2 = m v 2 2 2 — m v 2 2 2 .

Как видим, работа, совершенная силой, пропорционально изменению квадрата скорости тела.

Определение. Кинетическая энергия

Кинетическая энергия тела равна половине произведения массы тела на квадрат его скорости.

Кинетическая энергия — энергия движения тела. При нулевой скорости она равна нулю.

Читать еще:  Ритуал исполнения желаний в новый год. Новогодний ритуал на исполнение желаний. Как загадать желание в новогоднюю ночь

Терема о кинетической энергии

Вновь обратимся к рассмотренному примеру и сформулируем теорему о кинетической энергии тела.

Теорема о кинетической энергии

Работа приложенной к телу силы равна изменению кинетической энергии тела. Данное утверждение справедливо и тогда, когда тело движется под действием изменяющейся по модулю и направлению силы.

A = E K 2 — E K 1 .

Таким образом, кинетическая энергия тела массы m , движущегося со скоростью v → , равна работе, которую сила должна совершить, чтобы разогнать тело до этой скорости.

A = m v 2 2 = E K .

Чтобы остановить тело, нужно совершить работу

A = — m v 2 2 =- E K

Потенциальная энергия

Кинетическая энергия — это энергия движения. Наряду с кинетической энергией есть еще потенциальная энергия, то есть энергия взаимодействия тел, которая зависит от их положения.

Например, тело поднято над поверхностью земли. Чем выше оно поднято, тем больше будет потенциальная энергия. Когда тело падает вниз под действием силы тяжести, эта сила совершает работу. Причем работа силы тяжести определяется только вертикальным перемещением тела и не зависит от траектории.

Вообще о потенциальной энергии можно говорить только в контексте тех сил, работа которых не зависит от формы траектории тела. Такие силы называются консервативными (или диссипативными).

Примеры диссипативных сил: сила тяжести, сила упругости.

Когда тело движется вертикально вверх, сила тяжести совершает отрицательную работу.

Рассмотрим пример, когда шар переместился из точки с высотой h 1 в точку с высотой h 2 .

При этом сила тяжести совершила работу, равную

A = — m g ( h 2 — h 1 ) = — ( m g h 2 — m g h 1 ) .

Эта работа равна изменению величины m g h , взятому с противоположным знаком.

Величина Е П = m g h — потенциальна энергия в поле силы тяжести. На нулевом уровне (на земле) потенциальная энергия тела равна нулю.

Определение. Потенциальная энергия

Потенциальная энергия — часть полной механической энергии системы, находящейся в поле диссипативных(консервативных) сил. Потенциальная энергия зависит от положения точек, составляющих систему.

Можно говорить о потенциальной энергии в поле силы тяжести, потенциальной энергии сжатой пружины и т.д.

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

A = — ( E П 2 — E П 1 ) .

Ясно, что потенциальная энергия зависит от выбора нулевого уровня (начала координат оси OY). Подчеркнем, что физический смысл имеет изменение потенциальной энергии при перемещении тел друг относительно друга. При любом выборе нулевого уровня изменение потенциальной энергии будет одинаковым.

При расчете движения тел в поле гравитации Земли, но на значительных расстояниях от нее, во внимание нужно принимать закон всемирного тяготения (зависимость силы тяготения от расстояния до цента Земли). Приведем формулу, выражающую зависимость потенциальной энергии тела.

Здесь G — гравитационная постоянная, M — масса Земли.

Потенциальная энергия пружины

Представим, что в первом случае мы взяли пружину и удлинили ее на величину x . Во втором случае мы сначала удлинили пружину на 2 x , а затем уменьшили на x . В обоих случаях пружина оказалась растянута на x , но это было сделано разными способами.

При этом работа силы упругости при изменении длины пружины на x в обоих случаях была одинакова и равна

A у п р = — A = — k x 2 2 .

Величина E у п р = k x 2 2 называется потенциальной энергией сжатой пружины. Она равна работе силы упругости при переходе из данного состояния тела в состояние с нулевой деформацией.

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Общие теоремы динамики механической системы. Кинетическая энергия: материальной точки, системы материальных точек, абсолютно твердого тела (при поступательном, вращательном и плоском движении). Теорема Кенига. Работа силы: элементарная работа сил, приложенных к твердому телу; на конечном перемещении, силы тяжести, силы трения скольжения, силы упругости. Элементарная работа момента силы. Мощность силы и пары сил. Теорема об изменении кинетической энергии материальной точки. Теорема об изменении кинетической энергии изменяемых и неизменяемых механических систем (дифференциальный и интегральный вид). Потенциальное силовое поле и его свойства. Эквипотенциальные поверхности. Потенциальная функция. Потенциальная энергия. Закон сохранения полной механической энергии.

5.1 Кинетическая энергия

Читать еще:  Есть ли минусы в грудном вскармливании? Перечень гипоаллергенных продуктов. Лохии: что это такое

а) материальной точки:

Определение: кинетической энергией материальной точки называется половина произведения массы этой точки на квадрат её скорости:

(126)

Кинетическая энергия является скалярной положительной величиной.

В системе СИ, единицей измерения энергии является джоуль:

б) системы материальных точек:

Кинетическая энергия системы материальных точек это сумма кинетических энергий всех точек системы:

(127)

в) абсолютно твердого тела:

1) при поступательном движении.

Скорости всех точек одинаковы и равны скорости центра масс, т.е. , тогда:

(128)

где М – масса тела.

(129)

Кинетическая энергия твердого тела, движущегося поступательно, равна половине произведения массы тела М на квадрат его скорости.

2) при вращательном движении.

Скорости точек определяются по формуле Эйлера:

(130)

(131)

(132)

Кинетическая энергия тела при вращательном движении:

(133)

где: z – ось вращения.

Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси, равна половине произведения момента инерции этого тела относительно оси вращения на квадрат угловой скорости тела.

3) при плоском движении.

Скорость любой точки определяются через полюс:

(134)

Плоское движение состоит из поступательного движения со скоростью полюса и вращательного движения вокруг этого полюса, тогда кинетическая энергия складывается из энергии поступательного движения и энергии вращательного движения.

Кинетическая энергия через полюс «А» при плоском движении:

(135)

Лучше всего за полюс брать центр масс, тогда:

(136)

Это удобно потому, что моменты инерции относительно центра масс всегда известны.

Кинетическая энергия твердого тела при плоско-параллельном движении складывается из кинетической энергии поступательного движения вместе с центром масс и кинетической энергии от вращения вокруг неподвижной оси, проходящей через центр масс и перпендикулярной плоскости движения.

Часто бывает удобным брать за полюс мгновенный центр скоростей. Тогда:

(137)

Учитывая, что по определению мгновенного центра скоростей его скорость равна нулю, то .

Кинетическая энергия относительно мгновенного центра скоростей:

(138)

Необходимо помнить, что для определения момента инерции относительно мгновенного центра скоростей необходимо применять формулу Гюйгенса – Штейнера:

(139)

Эта формула бывает предпочтительнее в тех случаях, когда мгновенный центр скоростей находится на конце стержня.

4) Теорема Кенига.

Предположим, что механическая система вместе с системой координат, проходящей через центр масс системы, движется поступательно относительно неподвижной системы координат. Тогда, на основании теоремы о сложении скоростей при сложном движении точки, абсолютная скорость произвольной точки системы запишется как векторная сумма переносной и относительной скоростей:

(140)

где: — скорость начала подвижной системы координат (переносная скорость, т.е. скорость центра масс системы);

— скорость точки относительно подвижной системы координат (относительная скорость). Опуская промежуточные выкладки, получим:

(141)

Это равенство определяет теорему Кенига.

Формулировка:Кинетическая энергия системы равна сумме кинетической энергии, которую имела бы материальная точка, расположенная в центре масс системы и имеющая массу, равную массе системы, и кинетической энергии движения системы относительно центра масс.

5.2Работа силы.

149.154.154.61 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источники:

http://odealnn.webfactional.com/lesson/potencialnaya_i_kineticheskaya_energia
http://zaochnik.com/spravochnik/fizika/zakony-sohranenija-v-mehanike/kineticheskaja-i-potentsialnaja-energii/
http://studopedia.ru/8_197106_kineticheskoy-energii.html

Ссылка на основную публикацию
Adblock
detector