Влияние массы тела на скорость падения. Действительно ли два тела (например, шара) одинаковой формы, но разной массы, будут иметь одну скорость падения? Если это так, то почему

О клинических исследованиях

Что такое клинические исследования и зачем они нужны? Это исследования, в которых принимают участие люди (добровольцы) и в ходе которых учёные выясняют, является ли новый препарат, способ лечения или медицинский прибор более эффективным и безопасным для здоровья человека, чем уже существующие.

Главная цель клинического исследования — найти лучший способ профилактики, диагностики и лечения того или иного заболевания. Проводить клинические исследования необходимо, чтобы развивать медицину, повышать качество жизни людей и чтобы новое лечение стало доступным для каждого человека.

Как их проводят?

У каждого исследования бывает четыре этапа (фазы):

I фаза — исследователи впервые тестируют препарат или метод лечения с участием небольшой группы людей (20—80 человек). Цель этого этапа — узнать, насколько препарат или способ лечения безопасен, и выявить побочные эффекты. На этом этапе могут участвуют как здоровые люди, так и люди с подходящим заболеванием. Чтобы приступить к I фазе клинического исследования, учёные несколько лет проводили сотни других тестов, в том числе на безопасность, с участием лабораторных животных, чей обмен веществ максимально приближен к человеческому;

II фаза — исследователи назначают препарат или метод лечения большей группе людей (100—300 человек), чтобы определить его эффективность и продолжать изучать безопасность. На этом этапе участвуют люди с подходящим заболеванием;

III фаза — исследователи предоставляют препарат или метод лечения значительным группам людей (1000—3000 человек), чтобы подтвердить его эффективность, сравнить с золотым стандартом (или плацебо) и собрать дополнительную информацию, которая позволит его безопасно использовать. Иногда на этом этапе выявляют другие, редко возникающие побочные эффекты. Здесь также участвуют люди с подходящим заболеванием. Если III фаза проходит успешно, препарат регистрируют в Минздраве и врачи получают возможность назначать его;

IV фаза — исследователи продолжают отслеживать информацию о безопасности, эффективности, побочных эффектах и оптимальном использовании препарата после того, как его зарегистрировали и он стал доступен всем пациентам.

Считается, что наиболее точные результаты дает метод исследования, когда ни врач, ни участник не знают, какой препарат — новый или существующий — принимает пациент. Такое исследование называют «двойным слепым». Так делают, чтобы врачи интуитивно не влияли на распределение пациентов. Если о препарате не знает только участник, исследование называется «простым слепым».

Чтобы провести клиническое исследование (особенно это касается «слепого» исследования), врачи могут использовать такой приём, как рандомизация — случайное распределение участников исследования по группам (новый препарат и существующий или плацебо). Такой метод необходим, что минимизировать субъективность при распределении пациентов. Поэтому обычно эту процедуру проводят с помощью специальной компьютерной программы.

Преимущества и риски для участников. Плюсы

  • бесплатный доступ к новым методам лечения прежде, чем они начнут широко применяться;
  • качественный уход, который, как правило, значительно превосходит тот, что доступен в рутинной практике;
  • участие в развитии медицины и поиске новых эффективных методов лечения, что может оказаться полезным не только для вас, но и для других пациентов, среди которых могут оказаться члены семьи;
  • иногда врачи продолжают наблюдать и оказывать помощь и после окончания исследования.

При этом, принимая решение об участии в клиническом исследования, нужно понимать, что:

  • новый препарат или метод лечения не всегда лучше, чем уже существующий;
  • даже если новый препарат или метод лечения эффективен для других участников, он может не подойти лично вам;
  • новый препарат или метод лечения может иметь неожиданные побочные эффекты.

Главные отличия клинических исследований от некоторых других научных методов: добровольность и безопасность. Люди самостоятельно (в отличие от кроликов) решают вопрос об участии. Каждый потенциальный участник узнаёт о процессе клинического исследования во всех подробностях из информационного листка — документа, который описывает задачи, методологию, процедуры и другие детали исследования. Более того, в любой момент можно отказаться от участия в исследовании, вне зависимости от причин.

Обычно участники клинических исследований защищены лучше, чем обычные пациенты. Побочные эффекты могут проявиться и во время исследования, и во время стандартного лечения. Но в первом случае человек получает дополнительную страховку и, как правило, более качественные процедуры, чем в обычной практике.

Клинические исследования — это далеко не первые тестирования нового препарата или метода лечения. Перед ними идёт этап серьёзных доклинических, лабораторных испытаний. Средства, которые успешно его прошли, то есть показали высокую эффективность и безопасность, идут дальше — на проверку к людям. Но и это не всё.

Сначала компания должна пройти этическую экспертизу и получить разрешение Минздрава РФ на проведение клинических исследований. Комитет по этике — куда входят независимые эксперты — проверяет, соответствует ли протокол исследования этическим нормам, выясняет, достаточно ли защищены участники исследования, оценивает квалификацию врачей, которые будут его проводить. Во время самого исследования состояние здоровья пациентов тщательно контролируют врачи, и если оно ухудшится, человек прекратит своё участие, и ему окажут медицинскую помощь. Несмотря на важность исследований для развития медицины и поиска эффективных средств для лечения заболеваний, для врачей и организаторов состояние и безопасность пациентов — самое важное.

Потому что проверить его эффективность и безопасность по-другому, увы, нельзя. Моделирование и исследования на животных не дают полную информацию: например, препарат может влиять на животное и человека по-разному. Все использующиеся научные методы, доклинические испытания и клинические исследования направлены на то, чтобы выявить самый эффективный и самый безопасный препарат или метод. И почти все лекарства, которыми люди пользуются, особенно в течение последних 20 лет, прошли точно такие же клинические исследования.

Если человек страдает серьёзным, например, онкологическим, заболеванием, он может попасть в группу плацебо только если на момент исследования нет других, уже доказавших свою эффективность препаратов или методов лечения. При этом нет уверенности в том, что новый препарат окажется лучше и безопаснее плацебо.

Читать еще:  Как зовут щенков из щенячьего. Как зовут всех щенков из мультфильма Щенячий патруль""

Согласно Хельсинской декларации, организаторы исследований должны предпринять максимум усилий, чтобы избежать использования плацебо. Несмотря на то что сравнение нового препарата с плацебо считается одним из самых действенных и самых быстрых способов доказать эффективность первого, учёные прибегают к плацебо только в двух случаях, когда: нет другого стандартного препарата или метода лечения с уже доказанной эффективностью; есть научно обоснованные причины применения плацебо. При этом здоровье человека в обеих ситуациях не должно подвергаться риску. И перед стартом клинического исследования каждого участника проинформируют об использовании плацебо.

Обычно оплачивают участие в I фазе исследований — и только здоровым людям. Очевидно, что они не заинтересованы в новом препарате с точки зрения улучшения своего здоровья, поэтому деньги становятся для них неплохой мотивацией. Участие во II и III фазах клинического исследования не оплачивают — так делают, чтобы в этом случае деньги как раз не были мотивацией, чтобы человек смог трезво оценить всю возможную пользу и риски, связанные с участием в клиническом исследовании. Но иногда организаторы клинических исследований покрывают расходы на дорогу.

Если вы решили принять участие в исследовании, обсудите это со своим лечащим врачом. Он может рассказать, как правильно выбрать исследование и на что обратить внимание, или даже подскажет конкретное исследование.

Клинические исследования, одобренные на проведение, можно найти в реестре Минздрава РФ и на международном информационном ресурсе www.clinicaltrials.gov.

Обращайте внимание на международные многоцентровые исследования — это исследования, в ходе которых препарат тестируют не только в России, но и в других странах. Они проводятся в соответствии с международными стандартами и единым для всех протоколом.

После того как вы нашли подходящее клиническое исследование и связались с его организатором, прочитайте информационный листок и не стесняйтесь задавать вопросы. Например, вы можете спросить, какая цель у исследования, кто является спонсором исследования, какие лекарства или приборы будут задействованы, являются ли какие-либо процедуры болезненными, какие есть возможные риски и побочные эффекты, как это испытание повлияет на вашу повседневную жизнь, как долго будет длиться исследование, кто будет следить за вашим состоянием. По ходу общения вы поймёте, сможете ли довериться этим людям.

Если остались вопросы — спрашивайте в комментариях.

Известно, что планета Земля притягивает любое тело к своему ядру при помощи так называемого гравитационного поля . Это значит, что чем больше расстояние между телом и поверхностью нашей планеты, тем с большей воздействует на него, и тем выраженнее

На тело, падающее вертикально вниз, по-прежнему воздействует вышеупомянутая сила, благодаря действию которой тело непременно упадет вниз. Остается открытым вопрос о том, какова будет его скорость при падении? С одной стороны, на предмет оказывает влияние сопротивление воздуха, которое достаточно сильно, с другое — тело тем сильнее притягивается к Земле, чем оно от нее дальше. Первое — очевидно будет являться препятствием и уменьшать скорость, второе — придавать ускорение и увеличивать скорость. Таким образом, возникает иной вопрос о том, возможно ли именно свободное падение в земных условиях? Строго говоря, тела возможно лишь в вакууме, где отсутствуют помехи в виде сопротивления потоков воздуха. Однако в рамках современной физики свободным падением тела принято считать вертикальное движение, которое не встречает помех (сопротивлением воздуха при этом можно пренебречь).

Все дело в том, что создать условия, где на падающий предмет не воздействуют иные силы, в частности, тот же воздух, можно только искусственно. Экспериментальным путем было доказано, что скорость свободного падения тела в вакууме всегда равна одному и тому же числу вне зависимости от веса тела. Такое движение получило название равноускоренное. Впервые оно было описано знаменитым физиком и астрономом Галилео Галилеем более 4 веков назад. Актуальность таких выводов не утратила своей силы по сей день.

Как уже было сказано, свободное падение тела в рамках обыденной жизни — это условное и не совсем корректное название. По факту же скорость свободного падения любого тела неравномерна. Тело движется с ускорением, за счет чего подобное движение описывается как частный случай равноускоренного движения. Иными словами, каждую секунду скорость тела будет меняться. Имея в виду данную оговорку, можно найти скорость свободного падения тела. Если мы не придаем предмету ускорения (то есть не бросаем его, а просто опускаем с высоты), то его начальная скорость будет равно нулю: Vo=0. С каждой секундой скорость будет увеличиваться пропорционально и ускорению: gt.

Здесь важно прокомментировать ввод переменной g. Это — ускорение свободного падения. Ранее нами уже было отмечено наличие ускорения при падении тела в нормальных условиях, т.е. при наличии воздуха и при воздействии силы тяжести. Любое тело падает на Землю с ускорением, равным 9,8 м/с2, вне зависимости от его массы.

Теперь, имея в виду эту оговорку, выводим формулу, которая поможет вычислить скорость свободного падения тела:

То есть к начальной скорости (если мы придавали ее телу посредством кидания, толкания или иных манипуляций) добавляем произведение на то количество секунд, которое потребовалось телу для того, чтобы достичь поверхности. Если же начальная скорость равна нулю, то формула приобретает вид:

То есть попросту произведение ускорения свободного падения на время.

Подобным образом, зная скорость свободного падения предмета, можно вывести время его передвижения или начальную скорость.

Следует также отличать формулу для подсчета скорости поскольку в этом случае будут действовать силы, постепенно замедляющие скорость движения брошенного предмета.

В случае, рассмотренном нами, на тело действует только сила тяжести и сопротивление воздушных потоков, что, по большому счету, на изменение скорости не влияет.

Ньютон, так же как и Галилей, начал исследования механического движения с изучения закона падения тел , но его задача была уже несколько проще. В распоряжении Ньютона имелся воздушный насос, о котором Галилей мог только мечтать.

Свои опыты Галилей проводил, бросая с Пизанской башни железные ядра, (подробнее: ). Ньютон взял длинную стеклянную трубку, запаянную с одного конца, положил в нее маленький кусочек пробки и дробинку и присоединил трубку к воздушному насосу. Насос выкачал большую часть воздуха.

Ученый запаял второй конец трубки. И дробинка с кусочком пробки осталась в сильно разреженном воздушном пространстве. Ньютон поворачивал трубку то одним концом вверх, то другим — кусочек пробки и дробинка падали вниз с равной скоростью. Так удалось доказать, что в пустоте предметы разного веса падают с одинаковой скоростью. Теперь эти простенькие приборы — «трубки Ньютона » — имеются в каждой школе.

Читать еще:  Спортивный праздник день народного единства в доу. Спортивный праздник ко дню Народного единства. «Что зовём мы Родиной?» сл и муз Т. В. Бокач

Скорость падения не зависит от веса

Скорость падения не зависит от веса. Падающие предметы веса не имеют, (подробнее: ), говорил еще Галилей. Значит, сделал вывод Ньютон, вес — это не коренное свойство всех предметов или веществ. Весом любые предметы обладают лишь до тех пор, пока они на чем-либо лежат или висят, а когда падают — лишаются веса.

Что такое вес

Один из предшественников Ньютона — французский философ-математик Рене Декарт утверждал, что вес — это давление, которое оказывают вещи на землю или на подставку, на которой они лежат. Ньютон вспомнил опыты Галилея с ведрами. Пока вода переливалась из одного ведра в другое, их общий вес был меньше, чем раньше, — падающая вода двигалась свободно, ее ничто не задерживало, она действительно ничего не весила во время падения.

Как только вся вода оказывалась в нижнем ведре, равновесие весов восстанавливалось. И это тоже не удивляло Ньютона. Раз вся вода собралась в нижнем ведре, то и давление ее на дно должно в точности равняться сумме давлений воды в двух ведрах. Вода как бы снова обрела свой вес.

Почему тела давят на подставку

Но почему тела давят на подставку ? Этого Декарт не знал. Возьмем гирю и подвесим ее на пружине. Пружина растянется. Теперь снимем эту гирю и возьмемся рукой за крючок пружины. Мы можем, приложив усилие, растянуть пружину настолько же, насколько ее растягивала своей тяжестью гиря. Тяжесть гири и сила руки оказывают на пружину одинаковое действие. Значит, причиной давления тел на подставку — их вес — является какая-то сила. Ее определил Ньютон.

Закон всемирного тяготения

Это земной шар притягивает к себе гирю и другие тела, удерживая их возле себя. Мы всюду и везде наблюдаем это явление и называем его тяготением. Изучением также занимался Галилей. Все тела, и большие и маленькие, притягиваются друг к другу, подчиняясь закону всемирного тяготения , открытому Ньютоном . Итак, вес — сила, с которой предметы, притягиваемые Землей, давят на удерживающие их подставки. Вес — проявление всемирного тяготения. Ньютон смог довести до логического завершения закон падения тел, которому положил начало Галилео ГалилеЙ.

И ещё одно важное условие — в вакууме. И не скоростью, а ускорением в данном случае. Да, в известной степени приближения это так. Давайте разбираться.

Итак, если два тела падают с одинаковой высоты в вакууме, то они упадут одновременно. Ещё Галилео Галилей в своё время опытным путём доказал, что тела падают на Землю (именно с большой буквы — мы говорим о планете) с одинаковым ускорением вне зависимости от их формы и массы. Легенда гласит, что он взял прозрачную трубку, поместил туда дробинку и перо, а вот воздух оттуда выкачал. И оказалось, что находясь в такой трубке, оба тела падали вниз одновременно. Дело в том, что каждое тело, находящееся в поле притяжения Земли, испытывает одно и то же ускорение (в среднем g

9.8 м/с²) свободного падения вне зависимости от его массы (на самом деле это не совсем так, но в первом приближении — да. На самом деле, в физике это не редкость — читаем до конца).

Если же падение происходит в воздушной среде, то кроме ускорения свободного падения возникает ещё одно; оно направлено противдвижения тела (если тело просто падает — то против направления свободного падения) и вызвано силой сопротивления воздуха. Сама сила зависит от кучи факторов (скорость и форма тела, например), а вот ускорение, которое придаст эта сила телу зависит уже от массы этого тела (второй закон Ньютона — F=ma, где a — ускорение). То есть, если условно, то «падают» тела с одним и тем же ускорением, но в разной степени «замедляются» под действием силы сопротивления среды. Иначе говоря, пенопластовый шарик будет активнее «тормозиться» о воздух коль скоро его масса меньше, чем у рядом летящего свинцового. В вакууме никакого сопротивления нет и оба шарика упадут примерно (с точностью до глубины вакуума и аккуратности проведения эксперимента) одновременно.

Ну и в заключении обещанная оговорка. В упомянутой выше трубке, такой же как у Галилея, даже в идеальных условиях дробинка упадёт на ничтожное количество наносекунд раньше опять же из за того, что её масса ничтожно (по сравнению с массой Земли) отличается от массы пера. Дело в том, что в Законе всемирного тяготения, описывающем силу попарного притяжения массивных тел, фигурируют ОБЕ массы. То есть для каждой пары таких тел результирующая сила (а значит и ускорение) будет зависеть от массы «падающего» тела. Однако, вклад дробинки в эту силу будет ничтожным, а значит и разница между значениями ускорений для дробинки и пера будет исчезающе мала. Если, например, вести речь о «падении» двух шаров в половину и в четверть массы Земли соответвтенно, то первый «упадёт» заметно раньше второго. Правда о «падении» тут говорить сложно — такая масса заметно сместит и саму Землю.

Кстати, когда дробинка или, скажем, камень падает на Землю, то, согласно всё тому же Закону всемирного тяготения, не только камень преодолевает расстояние до Земли, но и Земля в этот момент на ничтожно (исчезающе) малое расстояние приближается к камню. Без комментариев. Просто подумайте об этом перед сном.

Нет, только на силу. Вспомните опыт -перышко и дробинка в вакуме падают с одинаковой скоростью. 6 годов назад от Фикус

Нет не влияет для всех тел ускорение свободного падения в поле Земли 9, 8 метров на секунду в квадрате.

6 годов назад от Дмитрий Ливин

Закон Вы описали верно. Скорость падения (или, точне, его ускорение) зависит от произведения масс взаимодействующих тел.
Если падает гиря в один килограмм и гиря в тонну, то их скорости не будут отличаться сколько-нибудь заметно для приборов, потому что второй участник — Земля — имет все туже массу, и эта масса значительно больше любой из этих гирь. Поэтому сила притяжения между ними будет зависеть в-основном от массы Земли. И поэтому на Луне ОБЕ гири будут ускоряться слабе — и тоже почти одинаково слабе.

Читать еще:  Чем кепка отличается от бейсболки? Особенности головных уборов. Разница между кепкой и бейсболкой

Другой подход. Земля прикладывает к гире силу, которая заставляет гирю ускоряться. Сила эта прикладывается не кручке гири, а к е МАССЕ. Естественно, чем больше будет масса гири, тем больше силы Земля сможет приложить к этой гире. Но ускорение все равно не изменится, т. к. с увеличением приложенной силы одновременно увелисилось и количество вещества, к которому эта сила приложена. Одно компенсирует другое — и ускорение гири остается прежним. Да, сила приложена другая — но она приложена к другой гире! Физику не обманешь

Третий подход. Исходя из Вашегописания закона тяготения, ускорение должно меняться при изменении массы любого тела из пары. Но в случае с гирями и Землей вступает в действие тот эффект, что массы взаимодействующих тел различаются в миллионы раз, они далеко не сравнимы друг с другом. И меня массу только одного — крошечного — участника пары, Вы, конечно, не получите заметного изменения результатов, т. к. другой участник вкладывает в происходяще неизмеримо большую долю участия. Вот если бы Вы рассматривали укорение двух гирь между собой, тогда да — изменение массы любой из них сразу аметно сказывалось бы на ускорении обеих гирь. Или, для сравнения, попробуйте удвоить не массу гири, а массу Земли — вот тогда Вы получите ого-го какой прирост ускорения!

6 годов назад от Бодрая

Вобще влияет! Только если речь о падении на Землю, то в этом уравнении масса Земли на столько больше тел о которых обычно идет речь, что масса этого тела совсем ничтожно влияет на ускорение свободного падения, поэтому оно принято постоянным. Поэтому принимают, что не влияет)

Второй момент, вы говорите о частицах и произведении их масс. Так вот до сих пор не найдено ни одной элементарной частицы, которая имела бы массу. Теоретически это считается бозон Хиггса, но она до сих пор не найдена, над этим работает ЦЕРН. Вот такой вот парадокс.

6 годов назад от DAVO davo

Насчет закона всемирного тяготения — все правильно, так. Насчет скорости — скорость связана с массой очень косвенно и может быть вовсе не связана, а может быть и связана, все зависит от условий падения. Поскольку в величину скорости падения часто вмешиваются и другие силы, кроме силы тяготения, и время действия сил тоже существенный фактор.
Проще говоря — масса тела влияет на величину силы его притяжения к другому телу. Эта сила в свою очередь преодолевает силу инерции, тоже пропорциональную массе. Поэтому в безвоздушном пространстве ускорение будет постоянным — и то пока пока расстояние между телами и массы тел заметно не изменяются. А скорость падения будет зависеть не только от ускорения, но и от времени, в течение которого действовало ускорение. И, естественно, еще от начальной скорости.

Действительно ли два тела (например, шара) одинаковой формы, но разной массы, будут иметь одну скорость падения? Если это так, то почему?

И ещё одно важное условие — в вакууме. И не скоростью, а ускорением в данном случае. Да, в известной степени приближения это так. Давайте разбираться.

Итак, если два тела падают с одинаковой высоты в вакууме, то они упадут одновременно. Ещё Галилео Галилей в своё время опытным путём доказал, что тела падают на Землю (именно с большой буквы — мы говорим о планете) с одинаковым ускорением вне зависимости от их формы и массы. Легенда гласит, что он взял прозрачную трубку, поместил туда дробинку и перо, а вот воздух оттуда выкачал. И оказалось, что находясь в такой трубке, оба тела падали вниз одновременно. Дело в том, что каждое тело, находящееся в поле притяжения Земли, испытывает одно и то же ускорение (в среднем g

9.8 м/с²) свободного падения вне зависимости от его массы (на самом деле это не совсем так, но в первом приближении — да. На самом деле, в физике это не редкость — читаем до конца).

Если же падение происходит в воздушной среде, то кроме ускорения свободного падения возникает ещё одно; оно направлено противдвижения тела (если тело просто падает — то против направления свободного падения) и вызвано силой сопротивления воздуха. Сама сила зависит от кучи факторов (скорость и форма тела, например), а вот ускорение, которое придаст эта сила телу зависит уже от массы этого тела (второй закон Ньютона — F=ma, где a — ускорение). То есть, если условно, то «падают» тела с одним и тем же ускорением, но в разной степени «замедляются» под действием силы сопротивления среды. Иначе говоря, пенопластовый шарик будет активнее «тормозиться» о воздух коль скоро его масса меньше, чем у рядом летящего свинцового. В вакууме никакого сопротивления нет и оба шарика упадут примерно (с точностью до глубины вакуума и аккуратности проведения эксперимента) одновременно.

Ну и в заключении обещанная оговорка. В упомянутой выше трубке, такой же как у Галилея, даже в идеальных условиях дробинка упадёт на ничтожное количество наносекунд раньше опять же из за того, что её масса ничтожно (по сравнению с массой Земли) отличается от массы пера. Дело в том, что в Законе всемирного тяготения, описывающем силу попарного притяжения массивных тел, фигурируют ОБЕ массы. То есть для каждой пары таких тел результирующая сила (а значит и ускорение) будет зависеть от массы «падающего» тела. Однако, вклад дробинки в эту силу будет ничтожным, а значит и разница между значениями ускорений для дробинки и пера будет исчезающе мала. Если, например, вести речь о «падении» двух шаров в половину и в четверть массы Земли соответвтенно, то первый «упадёт» заметно раньше второго. Правда о «падении» тут говорить сложно — такая масса заметно сместит и саму Землю.

Кстати, когда дробинка или, скажем, камень падает на Землю, то, согласно всё тому же Закону всемирного тяготения, не только камень преодолевает расстояние до Земли, но и Земля в этот момент на ничтожно (исчезающе) малое расстояние приближается к камню. Без комментариев. Просто подумайте об этом перед сном.

Источники:

http://yandex.ru/health/turbo/articles?id=2463
http://picklesguru.ru/skorost-padeniya-tela-ot-massy-deistvitelno-li-dva-tela/
http://thequestion.ru/question/35244/deistvitelno-li-dva-tela-naprimer-shara-odinakovoi-formy-no-raznoi-massy-budut-imet-odnu-skorost-padeniya-esli-eto-tak-to-pochemu

Ссылка на основную публикацию
Adblock
detector