Выделяется при альфа распаде. Альфа- бета- и гамма- распады

Альфа- бета- и гамма- распады

Ядра большинства атомов – это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^226)Ra→(86^222)Rn+(2^4)He. Чтобы понимать смысл написанного выражения, изучите тему о массовом и зарядовом числе ядра атома.

Удалось установить, что основные виды радиоактивного распада: альфа и бета-распад происходят согласно следующему правилу смещения:

Альфа-распад

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2 и, соответственно, атомной массой А-4: (Z^A)X→(Z-2^(A-4))Y +(2^4)He. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Пример α-распада: (92^238)U→(90^234)Th+(2^4)He.

Альфа-распад – это внутриядерный процесс. В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне: (Z^A)X→(Z+1^A)Y+(-1^0)e+(0^0)v. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример β-распада: (19^40)K→(20^40)Ca+(-1^0)e+(0^0)v.

Бета-распад – это внутринуклонный процесс. Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.

Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие виды радиоактивности это альфа, бета и гамма-распад.

Выделяется при альфа распаде. Альфа- бета- и гамма- распады

В ядрах одного и того же элемента число нейтронов может быть различным, а число протонов всегда одно и то же. Такие ядра называются изотопами. Например, в ядрах водорода всегда 1 протон, а число нейтронов может быть 0, 1, 2, 3, 4, 6.

Читать еще:  Брачный договор готовый пример. Зачем нужно думать о том, как составить брачный договор? Все о том, как составить брачный договор…

Радиоактивность

Радиоактивность — явление самопроизвольного превращения неустойчивого изотопа одного химического элемента в изотоп другого элемента. При этом испускаются частицы, обладающие большой проникающей способностью.

Например, радиоактивный элемент радий превращается в другой химический элемент — радон с выделением гелия.

В 1899 г. Э. Резерфорд провел опыт, в результате которого было обнаружено, что радиоактивное излучение неоднородно. Существуют три различные частицы с разными зарядами. Альфа-частица — положительно заряженная (лишенный электронов атом гелия), бета-частица — отрицательно заряженная (электрон), и нейтральная гамма-частица (фотон).

Три вида излучения обладают разной проникающей способностью. Самые поникающие — гамма-лучи. Они легко проходят через вещество. Чтобы их остановить нужна свинцовая пластина толщиной 5 см, либо 30 см бетона, либо 60 см грунта.

Ядерные реакции

Пример:
где — альфа-излучение — ядра гелия.

Этот распад наблюдается для тяжелых ядер с А>200. При альфа-распаде одного химического элемента образуется другой химический элемент, который в таблице Менделеева расположен на 2 клетки ближе к ее началу, чем исходный.

Пример:
где — бета-излучение — электроны.

При бета-распаде одного химического элемента образуется другой химический элемент, который расположен в таблице Менделеева в следующей клетке за исходным.

Испускание гамма-излучения не приводит к превращениям элементов.

В ходе ядерной реакции суммарный электрический заряд и число нуклонов сохраняются. Ядерные реакции бывают двух типов: эндотермические (с поглощением энергии) и экзотермические (с выделением энергии). Если сумма масс исходного ядра и частиц, больше суммы масс конечного ядра и испускаемых частиц, то энергия выделяется, и наоборот.

Открытие протона:

Открытие нейтрона:

Виды радиоактивного распада

Явление радиоактивности сопровождается превращением ядра одного химического элемента в ядро другого химического элемента, а также выделением энергии, которая «уносится» с альфа- бета- и гамма-излучениями.

Все радиоактивные элементы подвержены радиоактивным превращениям.
В некоторых случаях у радиоактивного элемента наблюдается альфа- и бета-излучения одновременно.
Чаще химическому элементу присуще или альфа-излучение, или бета-излучение.
Альфа- или бета- излучения часто сопровождаются гамма- излучением.

Испускание радиоактивных частиц называется радиоактивным распадом.
Различают альфа-распад ( с испусканием альфа-частиц), бета-распад (с испусканием бета-частиц), термина «гамма-распад» не существует.
Альфа- и бета-распады – это естественные радиоактивные превращения.

Альфа-частицы испускаются только тяжелыми ядрами, т.е. содержащими большое число протонов и нейтронов. Прочность тяжелых ядер мала. Для того, чтобы покинуть ядро, нуклон должен преодолеть ядерные силы, а для этого он должен обладать достаточной энергией.
При объединении двух протонов и двух нейтронов в альфа-частицу ядерные силы в подобном сочетании (между нуклонами частицы) являются наиболее крепкими, а связи с другими нуклонами слабее, поэтому альфа-частица способна «выйти» из ядра. Вылетевшая альфа-частица уносит положительный заряд в 2 единицы и массу в 4 единицы.
В результате альфа-распада радиоактивный элемент превращается в другой элемент, порядковый номер которого на 2 единицы, а массовое число на 4 единицы, меньше.

Читать еще:  Конспект ООД по рисованию в старшей группе на тему «Осеннее дерево. Конспект ООД по рисованию «Наш аквариум» (старшая группа)


То ядро, которое распадается, называют материнским, а образовавшееся дочерним.
Дочернее ядро оказывается обычно тоже радиоактивным и через некоторое время распадается.
Процесс радиоактивного распада происходит до тех пор, пока не появится стабильное ядро, чаще всего ядро свинца или висмута.

Явление бета-распада состоит в том, что ядра некоторых элементов самопроизвольно испускают электроны и элементарную частицу очень малой массы — антинейтрино.
Так как электронов в ядрах нет, то появление бета-лучей из ядра атома можно объяснить способностью нейтронов ядра распадаться на протон, электрон и антинейтрино. Появившийся протон переходит во вновь образующееся ядро. Электрон, вылетающий из ядра, и является частицей бета-излучения.
Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов.

В результате бета-распада образуется новое ядро с таким же массовым числом, но с большим на единицу зарядом.

Гамма — распад — не существует

В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома.

Гамма излучение зачастую сопровождает явления альфа- или бета-распада.
При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и , когда оно переходит в нормальное состояние, то испускает гамма-кванты (в оптическом или рентгеновском диапазоне волн).

Так как радиоактивное излучение состоит из альфа-частиц, бета-частиц и гамма-квантов (т.е. ядер атома гелия, электронов и гамма-квантов), то явление радиоактивности сопровождается потерей массы и энергии ядра, атома и вещества в целом.
Доказательством того, что радиоактивное излучение несет энергию, является опыт, показывающий, что при поглощении радиоактивного излучения вещество нагревается.

33. Виды бета-распада.

Явление β-распада состоит в том, что ядро(A,Z) самопроизвольно испускает лептоны 1-го поколения – электрон (позитрон) и электронное нейтрино (электронное антинейтрино), переходя в ядро с тем же массовым числом А, но с атомным номером Z, на единицу большим или меньшим. При e-захвате ядро поглощает один из электронов атомной оболочки (обычно из ближайшей к нему K-оболочки), испуская нейтрино.В литературе для e-захвата часто используется термин EC (Electron Capture).
Существуют три типа β-распада – β — -распад, β + -распад и е-захват.

Главной особенностью β-распада является то, что он обусловлен слабым взаимодействием. Бета-распад — процесс не внутриядерный, а внутринуклонный. В ядре распадается одиночный нуклон. Происходящие при этом внутри ядра превращения нуклонов и энергетические условия βраспада имеют вид (массу нейтрино полагаем нулевой):

β-распад, также как и α-распад, происходит между дискретными состояниями начального (A,Z) и конечного (A,Z±1) ядер. Поэтому долгое время после открытия явления β-распада было непонятно, почему спектры электронов и позитронов, вылетающих из ядра при β-распаде были непрерывными, а не дискретными, как спектры α-частиц.
На рис. 3.1 показаны спектры электронов и антинейтрино, образующихся при β — -распаде изотопа 40 K.

Читать еще:  Возможный сменщик Колядина вырос в движении Суркова, был изгнан с Дальнего Востока и водит дружбу с дагестанцами из списка Forbes


Рис. 3.1. Спектры электронов и антинейтрино, образующихся при β — -распаде изотопа 40 K,
40 K → 40 Ca + e — + e.

Считалось даже, что в β-распаде не выполняется закон сохранения энергии. Объяснение непрерывного характера β-спектра было дано В. Паули, который высказал гипотезу, что при β-распаде вместе с электроном рождается ещё одна частица с маленькой массой, т.е. β-распад − трехчастичный процесс. В конечном состоянии образуется ядро (A,Z±1), электрон и лёгкая нейтральная частица – нейтрино (антинейтрино). Т.к. масса ядра (A,Z±1) гораздо больше масс электрона и нейтрино, энергия β-распада уносится лёгкими частицами. Распределение энергии β-распада Qβ между электроном и этой нейтральной частицей приводит к непрерывному β-спектру электрона.
Из закона сохранения энергии следует, что спектр антинейтрино зеркально симметричен спектру электронов.

где Nν(E) − число антинейтрино с энергией Е, Ne(Qβ – E) − число электронов с энергией (Qβ – E), Qβ − энергия β-распада, равная суммарной энергии, уносимой электроном и антинейтрино (энергия ядра отдачи 40 Ca не учитывается).
Наряду с законами сохранения энергии, импульса, момента количества движения в процессе β-распада выполняются законы сохранения барионного B и электронного лептонного Le квантовых чисел.

  • Электроны, нейтрино имеют B = 0, Le = +1.
  • Позитроны, антинейтрино имеют B = 0, Le = −1.
  • Каждый нуклон, входящий в состав ядра, имеет B = +1, Le = 0.

Поэтому появление электрона при β — -распаде всегда сопровождается образованием антинейтрино. При β + -распаде образуются позитрон и нейтрино. При е-захвате из ядра вылетают нейтрино. Так как е-захват – двухчастичный процесс, спектры нейтрино и ядра отдачи являются дискретными. Наблюдение дискретного спектра ядер отдачи, образующихся при е-захвате, было первым подтверждением правильности гипотезы Паули.
β-радиоактивные ядра имеются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая массовыми числами самых тяжелых ядер.
За счет того, что интенсивность слабых взаимодействий, ответственных за β-распад, на много порядков меньше ядерных, периоды полураспада β-радиоактивных ядер в среднем имеют порядок минут и часов. Для того чтобы выполнялись законы сохранения энергии и углового момента при распаде нуклона внутри ядра, оно должно перестраиваться. Поэтому период, а также другие характеристики β-распада в сильной степени зависят от того, насколько сложна эта перестройка. В результате периоды β-распада варьируются почти в столь же широких пределах, как и периоды α-распада. Они лежат в интервале T1/2(β) = 10 -6 с – 10 17 лет.

Источники:

http://www.nado5.ru/e-book/alfa-beta-raspad-pravilo-smezcheniya
http://fizmat.by/kursy/atomnoe_jadro/jadernye_reakcii
http://studopedia.ru/10_203399_vidi-radioaktivnogo-raspada.html

Ссылка на основную публикацию
Adblock
detector